LCが並列に接続されているので、並列共振の問題です。
共振周波数は1/2π√LCで求まりますから、ここにL=2H、C=1.5Fを代入すると
- f=1/2√3π
となります。並列共振時、LC並列部分のリアクタンスは無限大となるので、このときの回路はLC部分が切り離され、10Vの電源に1Ω+1Ωが接続されただけの回路となります。したがって流れる電流は5Aです。また、並列共振時はLC並列部分は完全に切り離したものと等価ですので、当然電圧と電流の位相差はゼロです。
以上より、答えは(3)です。
LCが並列に接続されているので、並列共振の問題です。
共振周波数は1/2π√LCで求まりますから、ここにL=2H、C=1.5Fを代入すると
となります。並列共振時、LC並列部分のリアクタンスは無限大となるので、このときの回路はLC部分が切り離され、10Vの電源に1Ω+1Ωが接続されただけの回路となります。したがって流れる電流は5Aです。また、並列共振時はLC並列部分は完全に切り離したものと等価ですので、当然電圧と電流の位相差はゼロです。
以上より、答えは(3)です。
「力率1/√2の誘導性負荷」ということから、負荷は絶対値が等しい抵抗とリアクタンスを持ったコイルの直列と分かります。(例:10+j10[Ω])
ここで、V2を基準にして考えると、誘導性で遅れ力率1/√2ということから、回路に流れる電流はV2に対して遅れ45°であることが分かります。
この回路電流をIとすると、負荷に対して直列に挿入されているR+jωLに発生する電圧は、「R=ωL」という条件よりIに対して進み45°の電圧が発生していることになります。つまり、V2を基準にすると、負荷に対して直列に挿入されているR+jωLに発生する電圧は位相差無し(V2と同位相)だということが分かります。
したがって、V2に対して同位相の電圧を足したところで位相はV2と同じですから、V1とV2の位相差はゼロとなります。答えは(1)です。
なお別の考え方として、もしこの回路でV1とV2の位相差がゼロ以外の値だったとすると、このようなRとLを何個も直列に挿入してしまえば、電源と負荷の間の位相差がどんどん変化していってしまうことになります。これはおかしいので、位相差はゼロしかないことが直感的に求まります。
(分布定数回路として考えれば「RとLを何個も直列に挿入してしまえば、電源と負荷の間の位相差がどんどん変化していってしまう」ことが正しくなりますが、ここでは集中定数回路なのでそういう面倒な話ではありません)
スイッチSを閉じる前、Rには2Aの電流が流れています。
ということは、Sを閉じた後にRに流れる電流は4Aです。もちろん、このとき10Vの電圧源から流れ出る電流は2Aで、電圧源からの2Aと電流源からの2Aの合計4AがRに流れています。
また、Sを閉じた段階でr=1Ωの両端に発生する電圧は、1Ω×2A=2V。電圧源から1Ωでの電圧降下を差し引いて、Rの両端の電圧は10V-2V=8Vです。
以上の事から、Rは「4Aの電流が流れたときに8Vとなる抵抗」ですから、答えは(1)の2Ωです。
簡単な連立方程式を解くだけの問題です。
まずRaかRcを消去したいので、③式より
④を①に代入して、
⑤と②の左辺どうし、右辺どうしを足して、
⑥式を整理して、
以上より、答えは(2)です。
P=I2R=V2/Rを使うだけの問題です。これを計算すると、
となるので、直列の最大電流は25mAです。100+200=300Ωの合成抵抗に25mAを流したときの電圧は7.5Vですから、7.5÷5=1.5倍の電圧です。
以上より、答えは(1)です。
電流は、その進む方向の周囲に右ねじの法則の向きに磁界を作ります。これを円に沿って一周すると、円の中心軸上にはx軸の+の向きに磁界が発生します。また、電流Iが距離rのところに作る磁界はI/2πrで与えられ、離れれば離れるほど距離に反比例して弱くなるほか、電流とx軸との角度によっても小さくなります(O点が最大)。
したがって、答えは(4)です。数学的にこのグラフを求めることは勿論できますが、それ以前に常識として見たらすぐに答えが分からないといけない問題です。
題意より、コンデンサには電源が接続されていて、誘電体などを挿入しても極板間電圧が変わりません。
極板間距離をd、誘電体の比誘電率をεrなどとして数式を立てれば求まりますが、もっと直接的に、題意に沿う数字を勝手に入れて求めてみます。
極板間距離を1[m]、電源電圧を1[V]とすると、極板間の電界は1[V/m]です。また、極板の面積Sがうまく調整してあって、コンデンサの静電容量が1[F]であるとしてしまいます。ここで、極板の半分の厚さで、比誘電率が9の誘電体を入れたとします。
すると、このコンデンサは、静電容量が2[F]の空気コンデンサと、2×9=18[F]の誘電体コンデンサの直列と同じ状態になります。コンデンサに与えられる電圧は1[V]のままで変わりませんから、各々のコンデンサの電圧は静電容量の逆数を取って0.9[V]:0.1[V]です。
空気コンデンサの極板間電界は、極板間距離0.5[m]、極板間電圧が0.9[V]より、1.8[V/m]となって元より上昇することが分かります。
導体は電線と同じなので、もし極板間距離の半分の導体を入れた場合、実質的に空気コンデンサの極板間距離が短くなったと等価ですから、極板の間の電界は2倍になります。
以上より、答えは(1)です。
(ア)…反発力
クーロン力は同種電荷間では反発力です。そもそも、吸引力だったら導体球どうしがくっついてしまうのでこの図のようになり得ません。
(イ)…3Q^2/4πε0d^2
クーロン力の式に代入するとこの値になります。
(ウ)…16πε0l^2mg/3Q^2
ちょっと計算がややこしいですが、F^2+(mg)^2=T^2の両辺の√を取るとT=の式になるので、この式をF/T=d/2lに代入します。すると{1-(d/2l)^2}=(mg)^2(d/2l)^2となり、
両辺の√を取って出題文のような形に式を変換するとこの式が求まります。
(エ)…増加
クーロン力の式より、3QとQの積よりも2Qと2Qの積の方が大きくなるため、一旦接触させた後の方がクーロン力は強くなります。
答えは(1)です。
明日日曜日は年に一度のイベント、電験3種の試験日です。「試験の出題予想は?」なんて聞かれることもありますが、適当な事を言うわけにもいかないし、いつも通り電気物理の基本からちゃんと理解していれば大丈夫、としか言いようがないです。
とはいえそれも何なので、何か書いておきます。
例年、最初の方の抵抗組み合わせ問題は、「何か」に気付かないと無駄に計算時間を浪費するように仕組まれた問題が良く出ています。例えば、多数の抵抗を組み合わせた回路で、良く回路を見ると電流が全く流れない抵抗が何個もあり、それを取り去ってしまえば超簡単な回路になる、それに気付けば即座に答えが求まるけれど、それに気付かない人は複雑なキルヒホッフの連立方程式の計算に時間を浪費してしまうようなもの。したがって、どうも複雑だな?と思った場合、ちょっと立ち止まって別の角度から見てみると良いかもしれません。
後は、どの科目もそうですが、残り1日で出来る直前対策として、過去数年の過去問の中から知識問題(知ってれば解けるし知らなきゃ出来ない問題)のみをピックアップし、それを集中的に覚えておきましょう。「次のうち誤った記述はどれか」式の問題は、正解となる誤った記述以外の正しい記述を覚える感じで。
電力は知識問題の比率が高いので、上に書いた直前対策みたいな感じで宜しいかと思います。敢えて言えば何だろう?太陽光とか風力とか、自然エネルギー関連がここ最近のトレンドかな?(外したらごめん)
ここ最近、直流機についての掘り下げた問題は出てない気がします。基本的に、界磁磁束×コイルの断面積×巻数×回転速度が逆起電圧(発電機の場合は発電電圧)で、そこから巻線の抵抗の影響を考えたものが端子電圧…ってことが分かってれば何とかなるのが直流機。なので界磁巻線と電機子巻線が直列の直巻は特徴的な性質を示す、と。
同期機・誘導機については必ず出題されるだろうけど、基本的な性質を抑えてあれば大丈夫な気がする。そういえばインバーター制御の問題なんか出ても良いんじゃないかと思うけど(こういうことを言って外すのもアレではある)。
自然エネルギー関係も近年良く出てるから、太陽電池とか風車、小水力発電あたりも。
例えば3.11の後は計画停電の問題が出たりと、割と最近起こったニュースに関するトレンドが出題される傾向がある。じゃあ最近は何があったかというと、…
ん~…
何かあったかな?
まぁ、近年太陽光発電がトレンドではあるかな?
試験直前の1日で出来る対策と言えば、ここ数年の過去問の出題文のカッコの中に正解を入れて黙読(音読でも良いけど)する、位かな?
もちろん全く同じ問題が出題はされないけど、同じあるいは近接した法律について出題される事はあるからね、と。
まぁ、残り1日の直前対策は、どの科目についても過去数年の知識問題をピックアップして黙読あるいは音読、これでしょう。
皆様の試験合格をお祈り申し上げております。