「SAT電験3種講座」タグアーカイブ

SAT電験3種講座 法規 質問回答(電験3種 平成16年 法規 問11 張力荷重計算)

法規18章の例題の解説を詳しくお願いします。 図解つきで宜しくお願いします。

この電柱は、左側に電線で、上が9000N・下が4000Nの力で引っ張られています。仮に右側の支線が外れてしまったらどうなるかといいますと、電柱が地面に接している点を中心として左側に倒れてしまいます。この運動は、完全に倒れてしまうまで左側に90度の角度分だけの回転運動です。

物体が力によって回転運動をするとき、その回転力のことをモーメントと言います。例えば、電柱の長さが長く、電柱を引っ張る電線の取り付け位置が高ければ高いほど、そして電線が電柱を引っ張る力が強ければ強いほど、電柱は強い力で倒されることが分かります。モーメントの値は、

  • (回転中心から、力が及ぼされる点までの距離)×(回転させようとする力の大きさ)

で求めることができます。以上のことから、2本の電線が電柱を左側に倒そうとする回転モーメントを求めると、

  • 下側の電線・・・4kN×8m=32[kN・m]
  • 上側の電線・・・9kN×10m=90[kN・m]
  • 合計・・・32+90=122[kN・m]

となり、122[kN・m]のモーメントであることが求められます。

支線が、このモーメントと全く同じ値で右側に引っ張ることにより電柱が倒れるのを防ぎますから、支線の取り付け点の高さが8mであることを考えると

  • 8×T=122

となればよいので、支線は電柱から90度右側に

  • 122÷8=15.25kN

の力で引っ張ればちょうど釣り合うことになります。

しかし、支線は電柱をまっすぐ右に引っ張ることはできません。この電柱を斜めに引っ張っていますので、その斜めの力の水平方向右側成分が15.25kNになるためには、添付の図の通り、

  • 5:3=x:15.25

となりまして、これより25.4kNが支線の荷重であることが求まります。
houki18

 

 

2016-2017年版 SAT電験3種講座テキスト誤植訂正(法規編)

  • P.17下から4行目

22000×1.15÷1.1=28750 → 22000×1.15÷1.1×1.25=28750

  • P.24上から6行目

電動機負荷電流≧ → 電動機負荷電流>

  • P.24上から8行目

電動機負荷電流≧ → 電動機負荷電流>

  • P.25

9行目と10行目を1行にまとめる(改行を無くす)

  • P.32下の図

電線+氷雪の合計がd[m]となっているが、電線のみを示すように修正

  • P.39の出題文

「ただし、負荷の力率は100%とする。」を追加

  • P.39の計算式

(4/20)2×6+(12/20)^2×6+(16/20)^2×6+(6/20)^2×6

の式に、銅損の270W(0.27kW)を掛ける部分が抜け落ちていたので次のように訂正します。

{(4/20)^2×6+(12/20)^2×6+(16/20)^2×6+(6/20)^2×6}×0.27

2016-2017年版 SAT電験3種講座テキスト誤植訂正(機械編)

  • P.10上から13行目

和同複巻は→和動複巻は、

  • P.15下から2行目と下から1行目

89I^2→81I^2

効率は89I^2/105I^2=85%→効率は81I^2/105I^2=77%

  • P24上から2行目

同期リアクタンスに反比例→同期インピーダンスに反比例

  • P25下から4行目

×空隙を小さくすると効率が悪くなってしまう

〇空隙を小さくしないと効率が悪くなってしまう

  • P.26図

E1の上側端子から変圧器方向に「I1→」を追加

  • P.33上から2行目

このとき、→vaが実効値100Vの交流であるとき、

  • P.33図1

右側のva→vd

負荷抵抗からサイリスタ回路側に向かう矢印「←」を削除

  • P.42図

電磁誘導で生じる電流(過電流)→電磁誘導で生じる電流(渦電流)

  • P.48・P.49・P.56

電験3種→電験三種(他にも同様な部分があれば統一。ローマ数字でも漢数字でも良いけど、本の表題が漢数字なので、それに合わせる)

  • P.52上から4行目~5行目

NOR、NAND、EXORの後に「回路」を追加

2016-2017年版 SAT電験3種講座テキスト誤植訂正(数学編)

  • P.54計算例の式の最後の分子

bc+ad→bc-ad

  • P.56上から3行目

sinθ=の後にcosを追加

  • p.129 上から11行目

乗用対数→常用対数

  • 回路図 p.131

C の記号は = (Eの記号の表記と同じになっている)

  • 分配法則 p.140

誤:A+(B・C)=(A+B)・(A+C)

正:A・(B+C)=A・B+A・C

2016-2017年版 SAT電験3種講座テキスト誤植訂正(電力編)

  • P.8下から5行目

発電機を出るまで→発電機に入るまで

  • P.9下から3行目

m×42→m×4^2(m かける 4の2乗)

  • P.9下から1行目

3.7kPa→307kPa

  • P.15上から2行目

正確な定義は難しいが→正確な定義は難しいものであるが

  • P.32例題①冒頭

途中送電線路→地中送電線路

  • P.34上から6行目末尾

商用系統との連係→商用系統との連系

  • P.36図

三相線路の一番上の線にI[A]の右向き矢印を追加

  • P.41下から3行目

共に最小となるが→共に最小となり

 

2015-2016年版 SAT電験3種講座テキスト誤植訂正(理論編)

2016年まで出していたテキストについての正誤表です。2017年頭より新テキストに移行しましたので御注意ください。

  • P.6下から2行目

0.2S→0.02S

  • P.7下から5行目

抵抗率R→抵抗率ρ

  • P.7下から1行目

1×10^-6→1×10^-6×π

15Ω→4.78Ω

  • P.13下図

I2b→I3b

  • P.44下から7行目

37.5-j30→22.5-j30

  • P.44下から4行目

(37.5+IR)→(22.5+IR)

  • P.56上図

Xm→V

V→Vm

  • P.60図

左側のV2→V3

  • P.61下図

左側のA2→A3

右側のA2→A1

  • P.82上から10行目

慣例的にeで表す→慣例的にeやqで表す

P.83下から3行目

クーロン力は電界と同じ向き→クーロン力は電界と平行の向き

  • P.85下図

左側端子のv1→vi

右側端子のv1→vo

SAT電験3種講座 理論 質問回答(電験3種 平成26年 理論 問5 コンデンサ回路におけるキルヒホッフの法則)

平成26年度 理論 問5について、よく理解できないので詳細な解説を教えてください。宜しくお願いします。

まず、キルヒホッフの電流則の拡張として、電流を電荷量に置き換えて解きます。

上の10μFに左から右に流れる電荷量をQ1、20μFに左から右に流れる電荷量をQ2、下の10μFに左から右に流れる電荷量をQ3とします。

まず、b点において、キルヒホッフの電流則(の拡張、電荷の保存則)より、

  • Q1+Q2+Q3=0

次に、コンデンサの両端に生じる電圧を求めると、コンデンサに流れた電荷量Q、静電容量C、電圧Vの間にはQ=CVの関係があることを利用して、

  • 上の10μF:V1=Q1÷0.00001(左側が+)
  • 20μF:V2=Q2÷0.00002(左側が+)
  • 下の10μF:V3=Q3÷0.00001(左側が+)

の電圧が発生することが求まります。

ここで、接続された電池とコンデンサ両端の電圧の関係から、

  • V1-V2=Q1÷0.00001-Q2÷0.00002=20V・・・①
  • V2-V3=Q2÷0.00002-Q3÷0.00001=10V・・・②
  • V1-V3=Q1÷0.00001-Q3÷0.00001=30V・・・③

という関係が成り立ちます。

  • ①式の両辺に0.00002を掛けると、2Q1-Q2=0.0004・・・④
  • ②式の両辺に0.00002を掛けると、Q2-2Q3=0.0002・・・⑤
  • ③式の両辺に0.00001を掛けると、Q1-Q3=0.0003・・・⑥

ちなみに、④⑤⑥は独立した3式に見えますが、2式から残りの1式を導出できるので、実質は2つの式です。ここでもう一つ、Q1+Q2+Q3=0を利用します。

ここで①式に、Q1+Q2+Q3=0を変形したQ1=-Q2-Q3を代入すると、

  • -2Q2-2Q3-Q2=-3Q2-2Q3=0.0004・・・⑦

⑥式にQ1=-Q2-Q3を代入すると、

  • -Q2-Q3-Q3=-Q2-2Q3=0.0003・・・⑧

⑦式-⑧式を求めると、

  • -3Q2-2Q3+Q2+2Q3=-2Q2=0.0001

となり、Q2は-0.00005クーロンであることが求められます。つまり、20μFのコンデンサには、右から左に0.00005クーロンの電荷量が流れることが分かりますので、コンデンサの両端に発生する電圧は、V=Q/Cより、0.00005÷(20×10^-6)=2.5Vとなります。

 

次に、重ね合わせの原理を用いた解き方です。

まず、上側の20Vの電源を残し、下の10Vをショートさせた回路を考えます。するとこれは、20Vの+端子から上の10μFにつながり、中の20μFと下の10μFが並列になった30μFを経由して20Vの電源のマイナス端子に至る回路になります。コンデンサに電荷Qが流れ込んだとき、その両端に発生する電圧Vと静電容量Cの間にはQ=CVの関係がありますから、10μFと30μFの直列回路に電流が流れた際、コンデンサの両端に発生する電圧は静電容量に反比例します。したがって10μFと30μFの両端に発生する電圧は3:1になりますから、上の10μFには左側を+にして15V、中の20μFと下の10μFには右側を+にして5Vの電圧が発生します。

次に、下側の10Vの電源を残し、上の20Vをショートさせた回路を考えます。するとこれは、10Vの+端子から上の10μFと中の20μFの並列、合計30μFを通り、下の10μFを経由して電源のマイナス端子に至ります。これも上と同様にして、10Vのプラス端子-30μF-10μF-マイナス端子というコンデンサの直列回路になりますから、30μFと10μFの電圧比は1:3となり、上の10μFと中の20μFには左側をプラスとして2.5V、下の10μFには右側をプラスとして7.5Vの電圧が発生することがわかります。

以上の二つを重ね合わせて20μFのコンデンサに発生する電圧を求めると、20Vを残した回路では右側を+として5V、10Vを残した回路では左側を+として2.5Vが発生しますから、それらを差し引きして右側を+として2.5Vが答えとなります。

SAT電験3種講座 理論 質問回答(クーロン力とローレンツ力)

テキストP83 例題について質問です。回答に、クーロン力は”電界と同じ向きに生じる”とありますが、講座を視聴して、逆向きと考えてしまいました。その後、よくテキストを読み返してみると、4行目に”電荷eの値は負の値であることに注意”と書いてありました。図に描くと逆向きだが、力の向きは電界と同じとゆう事でしょうか?なんだかモヤモヤとしてしまいました・・・あまり深く考える必要はないでしょうか?

ご質問頂き有難うございます。

おっしゃる通りでして、クーロン力は、+の電荷に対して、電解と同じ方向に生じます。しかし、電子が持っている電荷量は負の値であるため、結果として電子は電解の向きと逆の力を受けるということになります。

円運動の半径式の意味、重さ速度に比例して磁力電荷に反比例、クーロン力とローレンツ力の合力を受けた電子はらせん運動をする、この辺りを押させておけば十分でしょうか?

電験三種の試験レベルでは、それで結構かと思います。(しかも、頻出範囲ではなくたまに出題される程度の分野です)

また、F=qEは、F=eEと同じ意味と考えてよいでしょうか?

その通りです。これは暗黙の了解というか習慣といいますか、電子の電荷量はqで表すこともあればeで表すこともあります。両方を混ぜて使ってしまい混乱を与えてしまったかもしれませんが、ご理解いただけましたら幸いです。

SAT電験3種講座 機械 質問回答(電験3種 平成26年 機械 問10 スイッチング回路における電圧・電流波形)

①スイッチSが「開」で運転時の電圧波形(Ed):LがあるためEdの発生時間が長くなるということは理解できますが、ダイオードがあるのになぜ電圧Edがマイナス側になるのですか?

コイルの特性について確認します。電流が流れていない状態から電圧をかけると、コイル自身に流れる電流が増加するのを嫌い、時間が経つにつれて徐々に電流が流れ出すという性質と、コイルにすでに電流が流れている場合、それを絶とうとしても電流の変化を嫌い、コイル自体が(コイルを貫いて生じている次回のエネルギーをもとにして)電圧を発生し、電流を流し続けようとする性質です。

これをもとにして、交流電源の電圧が0→最大値と増加する部分について考えると、負荷のコイルにかかる電圧も時間とともに増加し、コイルに流れる電流は90度の遅れ位相差をもって増加していきます。交流電源の電圧が最大値→0と減少する部分について考えると、これも90度の遅れ位相差をもってコイルの電流が変化(増加)していきます。

さて、交流電源の電圧が0になった瞬間について考えます。コイルは電源電圧に対して90度の遅れ位相差を持った電流がすでに流れています。コイルは、一度流れた電流を流し続けようとするので、コイルの下側にプラスの電圧を発生させます。すると、コイルの下側端子→(0Vの交流電源)→ダイオード→コイルの上側端子の順で電流が流れ続けることになります。さらに時間が進んで、交流電源が下側に+の電圧を発生させている状態になっても、コイルが発生する、コイルの下側端子をプラスとした電圧よりも、交流電源の電圧の方が低いうちは、回路に電流が流れ続けます。この状態でedの電圧を測定すると、上側端子よりも下側端子の方が高い電圧ですから、答えの波形は波形1のようになります。なお、コイルの発生電圧が交流電源の電圧よりも小さくなった時点で回路に流れる電流はゼロとなります。

(簡単化のために、より具体的に、例えばコイルの逆起電圧が下側に10V、交流電源電圧が下側に5Vとなっている瞬間をイメージしてもらえば、edがマイナスの電圧で、かつ電流が流れ続けるという状況が理解できるかと思います)

②スイッチSが「開」で運転時の電流波形(Id):Edにマイナス電圧が発生するのになぜIdはマイナスの電流が流れないのですか?ダイオードにはマイナスの電圧はかかるけどマイナスの電流は流れないという法則があるのですか?

問題の波形5に関しての疑問かと思います。これも、「コイルにすでに電流が流れている場合、その電流を減らそうとするとコイルはそれに逆らって、電流を継続させる働きをする向きに電圧を発生させる」原理で説明できます。コイルLは下向きに電流が流れるので、その電流を減らそうとする外力(電源電圧が低下する、など)に対して、下側にプラスの電圧を発生させて電流を流し続けようとします。すると、コイル-R-交流電源-ダイオード-コイルの回路が構成されるので、その途中に入っているダイオードに順方向電圧がかかればダイオードは電流を流し、逆方向電圧がかかれば電流はゼロになる、という動作以外の何物でもありません。

③スイッチSが「閉」で運転時の電流波形(Id):なぜスイッチSに電流が流れている間、Edが0Vなのですか?

ダイオードは、あくまでも「順方向に電圧がかかればいくらでも電流が流れ、その両端に発生する順電圧は非常に低い」「逆方向に電圧がかかれば、電流を全く流さない」という性質を発揮しているだけです。なので、スイッチを閉にしてしまえば、「コイルが電流を流し続けようとして下側をプラスとした電圧を発生」している間は、コイルと(スイッチで接続された)ダイオードの間で電流が循環します。ダイオードの順方向電圧は非常に低いので(この問題では、理想的なものとしてゼロVとしている)、この間のコイル両端の電圧はゼロとなります。

 

 

SAT電験3種講座 理論 質問回答(重ね合わせの原理の計算)

理論の12ページの重ね合わせの原理の計算の流れを教えてください。お願いいたします。

重ね合わせの原理というのは、線形回路において成立する法則です。線形回路というのは、回路を構成する素子(抵抗やコンデンサ、コイルなど)において、電圧対電流特性が比例関係になっているものを指します。従って電圧対電流特性が直線ではないダイオードなどの素子を含んでいる場合は、この原理を使うことができません。

重ね合わせの原理は、複数の電圧源や電流源を含む回路において、回路各部の電圧や電流の値は、複数の電圧源や電流源のうち1個だけを残し、他の電圧源は短絡、電流源は開放して求めた値を、電圧源や電流源の個数だけ繰り返して求めた値の和になる、というものです。

テキストP.12の下の回路について具体的に解説します。

まず、左側の4Vの電圧源を残し、右の2Vの電圧源は短絡した回路を考えます。すると、電池のプラス端子-4Ω-(2Ωと5Ωの並列)-電池のマイナス端子という回路になり、4Ωには左から右に14/19アンペア、5Ωには上から下に4/19アンペア、2Ωには上から下に10/19アンペアの電流が流れることが求められます。(オームの法則を用いて計算します)

次に、右側の2Vの電圧源を残し、左の4Vの電圧源は短絡した回路を考えます。すると、電池のプラス端子-(5Ωと4Ωの並列)-2Ω-電池のマイナス端子という回路になります。抵抗に流れる電流を求めると、4Ωには左から右に5/19アンペア、5Ωには下から上に4/19アンペア、2Ωには左から右に9/19アンペアが流れることが求まります。

以上の二つの場合を合計することで回路に流れる電流を求めると、4Ωは左から右に1アンペア、5Ωには0アンペア、2Ωには左から右に1アンペアの電流が流れることがわかります。なお、13ページの下の図において、5Ωに流れる電流がI2bとありますが、これはI3bの誤植です。ご迷惑をお掛けし申し訳ございません。

重ね合わせの原理は、このような電圧源・電流源・抵抗の回路以外にも、平成26年の理論問5のような、電源とコンデンサの組み合わせ回路においても利用することができ、キルヒホッフの法則を用いて解くよりも劇的に簡単に求めることができる場合もあります。