平成28年度 法規過去問題 問13(b)について
解説の地絡電流 1Aではなく 10Aではないでしょうか?按分した値と整合とれていません。
該当資料を確認したところ、ご指摘の通り、10Aであるところを誤って1Aと書いておりました。
正しく答えが求まっている(自分でも正しく答えを求めた)覚えがありますので、講座のPDF資料を作成する際、10とするところを誤って1としてしまったミスでした。
ご迷惑をおかけし誠に申し訳ございませんでした。また、ご指摘いただき感謝申し上げます。
平成28年度 法規過去問題 問13(b)について
解説の地絡電流 1Aではなく 10Aではないでしょうか?按分した値と整合とれていません。
該当資料を確認したところ、ご指摘の通り、10Aであるところを誤って1Aと書いておりました。
正しく答えが求まっている(自分でも正しく答えを求めた)覚えがありますので、講座のPDF資料を作成する際、10とするところを誤って1としてしまったミスでした。
ご迷惑をおかけし誠に申し訳ございませんでした。また、ご指摘いただき感謝申し上げます。
電力27年A問題 問3について質問です。
計算式に、30日間と言う内容がありませんが、何故かわかりません。重油消費量の1100tは、30日間連続運転時なので、式に出てこないのが、何故かわかりません。
あまり、理解出来ていないので、教えてください。
エネルギというのは、位置エネルギや運動エネルギ、熱エネルギ、電気エネルギなど色々な形があり、単位はジュール[J]で、それぞれ相互変換することができます。この問題の場合、「重油の燃焼による熱エネルギ」=「発電した電気エネルギ」という条件で式を立てることで答えを求めることになります。
熱エネルギを求める式は、
電気エネルギを求める式は、
ですので、出題の条件と照らし合わせてみます。
すると、熱エネルギは、
電気エネルギは、
(講義で使ったパワーポイントは誤って24が入っていますが、これは誤りです)
となり、実は「30日間」という数字は問題に関係ないことが分かります。
この問題は、エネルギの定義として、発熱量の単位ジュールと、電力量の単位1W×1秒=1ジュールがイコールである、という事さえ知っていれば求まる問題ですので、慌てて計算して誤ることの無いよう(…私も余計な24と入れて資料を作っておいて人のことを言えませんが…)お気を付け頂ければと思います。
猫電(電気基礎)P44のQ3の解法がよくわかりません。電源の向きが回路に与える影響がイメージできず、回路が読めません。この手の回路を読み解く問題を理解する方法を教えてください。
まず、電圧というのは相対的なものであるということと、まず最初は回路中、電流が流れない部分は無視しても構わない、ということをご理解いただければと思います。
例えば、乾電池は1.5Vの電圧を発生させますが、これは「-極に対して、+極は相対的に+1.5Vの電圧を持つ」ことを意味します。そして、-極を基準(=ゼロV)として考えた場合、+極は+1.5Vということになります。
しかし、+極を基準にして考えると、「乾電池は、-1.5Vの電圧を発生させる」と言うこともできます。このように、電圧はあくまでも相対的なものですから、どこを基準に置くかで数値は変わってきます。
次に、電流が流れる部分についてですが、この回路は、「上の100Vの電池の+極~20Ω~30Ω~下の100Vの電池のー極~下の100Vの電池の+極~上の100Vの電池のー極」という部分が閉じた回路になっているため、電流はこの部分にのみ流れることになります。この部分だけを取り出して考えると、単に「100Vの電池が2個直列になっているものに、20Ωと30Ωの直列抵抗が接続されている」だけの回路であることが読み取れ、したがって流れる電流も200V÷50Ω=4Aと求まります。
さてここで、左側にアース端子が接続されている理由ですが、これは暗黙のうちに、「ここの部分を設置してゼロVという事にするよ」という印です。したがって、上の100Vの電池の+極は+100V、下の100Vの電池のー極はー100V、b端子が接続されている部分は+20Vとなります。
なお、同じ問題に対する回答
http://wp.khz-net.co.jp/?p=974
もご覧いただければより理解しやすいかと思います。
電験3種機械テキストP18について
単相誘導機では位相をずらして始動するという風に講義の中で紹介がありましたが具体的にどのように位相をずらし、回転させるのでしょうか。
誘導電動機は、回転磁界の中にコイルを置いて回転させますので、単相(180°の交番磁界)では、コイルを真横から押す力しか働かず、そのままでは回転することができません。
そこで、そのような180°の交番磁界を発生する極の近傍に、わざと短絡した巻線を施した小さな磁極を設けます。すると、交番磁界の一部がこの磁極を流れようとするとき、短絡コイル(隈取りコイルと呼びます)の影響で磁界に時間的な遅れが生じるため、交番磁界から隈取りコイルのある極方向に若干の回転磁界が発生することになります。これがスタートとなり、回転を続けることができる仕組みです。
この構造の電動機は「隈取りモーター」
と呼ばれて、実は我々の身近で良く利用されています。
理論10の例題解説にて最後の式説明で4R2/3 =12R3より・・・みたいな表現がありますが、これはどういう意味でしょうか?(テキスト通りの表現ができませんでし)
それとも4R3=12R3の間違いでしょうか?
この部分は、R3(3は下付き小文字)の2乗(2は上付き小文字)の意味です。2乗を表す2とRの属性を表す3が上下に並んでしまうため、何か別の意味がある表現?かと思われてしまいましたが、上記の通りでございます。
いずれにせよテキストが間違いある前提でないので、上記の表現がどういうことかを考えネットで見てみてとか無駄な時間があるように思いますが、それとも判らないところは飛ばしてやるのが良い進め方でしょうか?
大変申し訳なく本当にゴメンナサイなのですが、幾つか間違いや誤植があることが判明しております。
SAT様のページにある誤植リストのほか、私のサイト
http://wp.khz-net.co.jp/?cat=80
なども参考にして勉強を進めていただければ頂ければ幸いです。
また、デルタースター変換の講義中に過去問をこなして理解を深めてくださいの様な説明がありましたが、どんどん進んで後で過去問をやるのか、講義見た後にそれに関連する問題を理解するまでやって次に進むやり方が良いのか教えて下さい。
勉強法については、正直人それぞれで合う合わないがありますので、どちらが好ましいとも言えないのが正直なところではありますが、個人的には、ある程度概要を掴んでしまえば、過去問題を解きつつ分からない部分は解説を読むなり検索して納得するなりして覚えていく、というやり方の方が合っています。
理論テキスト8ページの例題の回答で
1÷R+1÷Rx=I÷V
となる理由を教えて下さい。
この部分では、
という直列回路の特性に対しての、
という性質を用いています。
オームの法則より、抵抗値というのは「電圧÷電流」で求められます。
ここで、抵抗値の逆数として導電率を定義すると、Rオームの抵抗の導電率は1/Rとなります。また、抵抗の両端に掛かる電圧と流れる電流を用いて表せば、導電率は「電流÷電圧」で求められることになります。
これを式で表すと、(1/R)=I/Vとなり、電流Iを求める形に変形すると、I=V×(1/R)となります。
ここで、
という性質から、例題の回路に流れる電流の和を求めると、上記の式から、
となり、解説に示した
が導かれることになります。
平成24年度の理論過去問の問16(a)について質問です。先生が講義で仰っていた右側のスター結線をデルタ変換し、電流iabを求めることはできましたが、i1の求め方が分かりません。線間電圧200Vを√3で割って相電圧を求め、その相電圧をインピーダンスZの5√3+j5で割って、出てきた値をベクトル計算で合成しi1を求めても、角度の部分が回答と合いません。なぜこの方法が間違っているのかと、正しい答えの導き方を教えて下さい。よろしくお願いいたします。
電源側のΔ結線は、Yに変換することで200/√3になりますが、120°の位相差がある電源2つを合成しているため、合成してY結線の1つの電源に変換された電圧は、∠0°にはなりません。では、端子a’と負荷の中点に掛かる電圧はどうなるかといえば、これは(200/√3)∠-30°となります。
この位相差-30°の求めかたは、図を添付しますのでご覧ください。
まず、回路から、負荷側のb’-a’間に200∠0の電圧が掛かるのはすぐに分かります。(赤矢印)
このベクトルは平行移動できますから、開始点を負荷の中性点に移動します(緑矢印)
このとき、求めたいI1が接続されている負荷Z=5√3+j5Ωの両端の電圧(青矢印)と緑矢印の位相差を考えると、青矢印の方が-30°であることが分かります。
従って、Zの両端の電圧は、(200/√3)∠-30°です。
この電圧をZの絶対値、√(75+25)=10Ωで割ると、電流I1の絶対値は約11.55Aとなり、負荷の5√3とj5の間の角度が30度であることから、電源電圧に対して遅れ30°の電流が流れることが求まります。したがって、電源電圧の-30°と負荷の遅れ角-30°を足した-60°、つまり-π/3の遅れ角ということになり、答えは(4)となります。
今回、私は三相負荷のRをY→Δ変換してインピーダンスを求めましたが、答えが(4)になりました。どこがおかしいのでしょうか?
●一相の等価回路は、次のようになります。
線間電圧V(V)、直列接続コイル(L)に並列にC(F)と抵抗3R(Ω)が接続されている
合成インピーダンスを求めると、
Z=JWL+(3R×(1/JWC)/3R+(1/JWC))=3R/(1+(W3CR)²)+JWL-(JW9CR²/1+(W3CR)²)
より、
JWL-(JW9CR²/1+(W3CR)²)=0
L=9CR²/1+9(WCR)²
CをΔ→Y変換なら答えは(2)になるのですが、上記方法でもいいはずです。少し引っかかるのは、Δにした場合中性点がないので、一相を考えた場合、コイルLは2つが直接接続されていると考えるのですか?やはり、三相負荷以外に直列に負荷が入っている場合はY変換の方が導きやすいのでしょうか?
この問題は、確かにおっしゃるように、抵抗をΔ型に変換しても求められないことはありません。
しかし、
Z=JWL+(3R×(1/JWC)/3R+(1/JWC))
という式のうち、
(3R×(1/JWC)/3R+(1/JWC))
これは、Δ回路の一辺についてについての合成インピーダンスですが、このときコイルLには隣り合う二辺の合成電流が流れるはずです。したがって、
Z=JWL+(3R×(1/JWC)/3R+(1/JWC))
という式から力率1の条件を求めることはできません。
もちろん、隣り合う二辺のインピーダンスと、三相交流の位相差120°を考慮してベクトル図を描くなりすれば負荷側をΔ結線にしても答えを求めることはできますが、負荷側をY結線にしてしまえば、コイルと(抵抗・コンデンサ)は純粋に直列と見なすことができ、比較的簡単に答えを求めることができるようになります。
したがって、結果的には
Y変換の方が導きやすいのでしょうか?
そういうことになります。
〜トランジスタ増幅回路の例〜 についての質問になります
V be が 約0.6㌾ と言われてますが、エミッタ〜アース間に抵抗がつながっているので(コレクタ接地回路)と言うことになる。よって、約0.6㌾という認識でよろしいのでしょうか?
トランジスタのエミッタ~ベース間に発生する電圧VBEは、トランジスタの構造であるP-N半導体接合の接合部分に生じる電圧です。この電圧は、その回路の接地方式やトランジスタの使い方に関わらず、動作している場合は常に0.6V程度の電圧を生じさせているとお考え下さい。
ちなみに、この増幅回路のトランジスタはコレクタ接地回路と言う認識でよろしいのでしょうか?
トランジスタ増幅回路において、どの端子を接地しているかというのは、直流ではなく交流の立場で考えます。
このとき、接続されているコンデンサは直流を阻止し交流のみを通すために設けられていますから、交流で考える場合はコンデンサを短絡して考えます。すると、この回路は、入力がB-E間に接続され、Eは直接接地され、Cから出力を取り出していることが分かります。したがって、エミッタ接地回路になります。
1つの増幅回路に対して、トランジスタの特性全ての特性(エミッタ接地、ベース接地、コレクタ接地)が組み込まれていることはあるのでしょうか?
例えばトランジスタが3個使われている増幅回路で、一段目がベース接地、二段目がエミッタ接地、三段目がコレクタ接地という例は考えられますが、1つのトランジスタに対して全ての接地方式が同時に存在することはありません。
テブナンの定理について質問があります。
理論 テブナンの定理P26-P27
① テブナンの定理でDVDで説明がありましたP26の例題ですが、切り離した60V-40Ω-40Ωの回路は、抵抗が直列でそれぞれの40Ωの抵抗にかかる電圧は30Vで電流が0.75A流れている。
はい、その通りです。
② ショートさせた回路は抵抗が並列になるので、それぞれ40Ωの抵抗に60Vの電圧がかかっていて、全体では3A流れているが、分流しているので、60/40=1.5Aの電流が40Ωの抵抗には流れている。
これは27ページの真ん中の図のことかと思いますが、ちょっと解釈がおかしいようです。
ショートさせた回路は、60V-40Ωー40Ωの2つ目の40Ωを完全に短絡してしまい、その時に流れている電流を考えれば良いわけですから、60V-40Ωー0Ωという回路に流れる電流は1.5A、という事になります。
③ 簡単にした等価回路ですが、20Ωはショートさせた時の並列の合成抵抗。電圧の30Vは、(直列の40Ωにかかっていた30Vは理解できます。)ショートさせた部分には電流が素通しで流れるので、ショートさせた近くの40Ωの抵抗には、電流が流れない。よって、残りの40Ωの電圧が30Vなので、簡単にした等価回路の電圧は30Vである。
結果的にはそういう事になります。
テブナンの定理は、「ある2端子を取り出し、その端子を開放したときの電圧と短絡したときの電流から、それと全く同じ挙動を示す1個の電圧源と、1個の抵抗に置き換えることができる」というものですから、上記のように「開放したら30Vが発生し、短絡したら1.5Aが流れる」のと同じ状況を作り出せばいいわけです。これは、30Vの電圧源と、20Ωの直列抵抗という事になります。
④ テブナンの定理は、P20の例題には使用できない。
適用出来ないわけではありませんが、5Ωを開放したとき、その両端に発生する電圧を求めるとゼロVになってしまいますから、その時点で回路全体の挙動が決定されてしまうため、「1個の電圧源と1本の直列抵抗に置き換え」るまでもない、ということになります。
と理解していますが、大丈夫でしょうか?どこの電圧と、どこの抵抗を使用すれば、簡単な回路になるのかが、きちんと理解ができません。
テブナンの定理は、複雑な線形回路網を単純な回路に置き換えるというものです。そのため、回路中から2端子を取り出し、その挙動から1個の電圧源と1個の抵抗に変換しているわけです。
どのように適用するかは問題によるのですが、抵抗の組み合わせ回路についての過去問を解いていけば比較的容易に勘所は分かるのではないかと思います。