平成27年の問17のbですが、アドミタンスを計算すると1/30-j1/30になり、答えは1.06×10^-4になってしまいよくわかりません。
この問題は、電源側がV結線になっているものの、実質的に電源側が三相Δ結線、負荷側が三相Y結線負荷という事になります。
コンデンサを接続したときiaの波形はeaに対して30度位相が遅れているということは、三相ΔーY結線の性質から、負荷の力率が1であることを意味します。したがって、Δ結線のCをY結線に変換して1相分のR-Lと並列に接続したとき、リアクタンス分が0になればいいわけです。
ここで1相分のインピーダンスを考えると、Rが5Ω、Lが2πfL=約+j5Ωより(5+j5)Ωですから、このRL直列部分のアドミタンスを計算すると、
- 1/(5+j5)=(5-j5)/(5+j5)(5-j5)=(1/10)-j(1/10)
となります。これが1相分のリアクタンスですから、コンデンサはこの虚数分を打ち消せばよいので、並列コンデンサのサセプタンスは+j(1/10)となり、
- 2πfC=(1/10)
を解くと、C=3.18×10^-4が求まります。このCは、Δ結線をY結線に変換した際の静電容量ですから、YからΔに戻すと静電容量は1/3となり、約1.06×10^-4≒1.1×10^-4が答えとなります。