「質問回答」カテゴリーアーカイブ

SAT電験3種講座 理論 質問回答(電験3種 平成24年 理論 問10 RLC回路のアドミタンス計算)

平成24年過去問問10について質問です。私はアドミタンスと聞いただけで思考停止してしまいます…

アドミタンスと聞いただけで苦手意識が出てしまうという感覚は、私も良く分かります。電気回路において、電圧を電流で割った抵抗という概念は比較的素直に理解できます。しかし、抵抗の逆数のコンダクタンスや、インピーダンスのの逆数のアドミタンスは、概念がつかみにくく理解しにくいものです。今自分が扱っている値はどんなものであるか、をきちんと把握しつつ慣れていくしかないでしょう。

この問題の場合、10MHzと凄く高い周波数が出てくる為、Xc=1/2πfCより、並列回路の一つにもの凄く小さな抵抗がある。という事は C、L、R2の合成抵抗はほぼゼロと考え、I10MHz=V/20と考えました。

全く問題ありません。もちろん厳密には計算して求める必要があるのですが、

  • 10MHzは非常に高い周波数だから、コンデンサはほぼ電流を素通し

という感覚を持っているのか、それともいちいち計算しないと数字が出ないのかでは、問題を解くスピードも違ってきます。真面目に計算するだけではなく、できれば見た瞬間に出題者の意図をつかむ事ができるのが大切ですが、この問題はその好例です。

回路の並列共振周波数1/2π√(LC)を計算すると10Hzになります。従って10HzではR1とR2の単なる直列回路、10MHzではほぼR1だけの素通し回路になりますので、電流比を求めると1:2.5、したがって答えは(1)ということになります。

個人的に複雑な計算を素早く要領よく計算出来る自信が全くありません…電験3種の場合、極力計算を避ける考え方でも何とかなるでしょうか?

電験3種の試験において、計算問題の比率は思ったほど高くありません。もちろん計算を全くなしでは合格はできませんが、複雑な計算は後回しにしても十分合格の可能性はあります。この問題の場合を例にとると、

  • 並列共振の周波数を求める式(1/2π√(LC))
  • 10MHzではコンデンサーはほぼ素通しであること

の2つが分かれば、すぐに答えが求まります。

SAT電験3種講座 理論 質問回答(電流が作り出す磁界の様子)

環状鉄心にコイルを巻いた時の磁界がどのように発生するか、また同様に円形に巻いたコイルの磁界がどのように発生するのか教えて下さい。
公式がどのような磁界が発生しどのような形で磁界の力が発生するか
教えて下さい。宜しくお願いします

まず、電線一本だけについて考えると、電線を中心とした同心円状に磁界が発生します。

これを鉄心に巻いた場合、隣り合う電線一本一本の互いに反対向きとなる磁界成分は打ち消し合うので、全体でみると鉄心の中をまっすぐ磁界が通過するような形になります。環状鉄心の場合は、環状鉄心の中だけをぐるぐる回転するような磁界となります。

私が分かりやすく絵を描ければいいのですが、私は殺人的に絵が下手なため余計に分かりにくい図しか掛けませんから、検索結果で申し訳ありませんが以下のリンクの検索結果をご覧いただけば分かりやすいかと思います。

https://www.google.co.jp/search?q=%E9%89%84%E5%BF%83%E3%80%80%E7%A3%81%E7%95%8C&source=lnms&tbm=isch&sa=X&ved=0ahUKEwiSldrry-7SAhVCe7wKHZ9tDNEQ_AUIBigB&biw=1846&bih=1290

SAT電験3種講座 機械 質問回答(電験3種 平成25年 機械 問18 過去問解説 ブール代数の論理演算)

機械編の28講論理演算とブール代数の例題(b)の質問です。解説でz=1、z=0とおいて選択肢を検討していますが、その解説が理解できませんでした。よろしくお願いいたします。

ブール代数の計算式は、本来であれば論理式を展開して計算した結果、回答の式にたどり着くのが正しい方法ですが、さほど難しくない計算式であることと、電験3種の受験生はブール代数の計算が苦手な方が多いだろう、という推測から、「元の式に値を代入した結果と、答えの選択肢の式に値を代入した結果が同じであればいい」という逆側の発想により解説したわけです。

まず、出題の論理式でZ=0と固定すると、Zとの積は常に0になるので、残るのはX・Yのみです。この段階で、回答選択肢の②③は除外されます。つぎに、Z=1と固定すると、出題の論理式はX・Y+¬X・Y+¬X・¬Yとなるので、¬Xで括るとX・Y+¬X(Y+¬Y)となります。

ここで、(Y+¬Y)は常に1となりますから、結局¬Xが残って、出題の式はX・Y+¬Xとなります。

これは前提条件としてZ=1ですから、回答の選択肢と照らし合わせると、¬X・Zが含まれている⑤が残ることが分かります。

※¬は論理否定の記号で、¬XというのはXの上にバーが付いているものと同じ意味です。

SAT電験3種講座 猫電 質問回答(直流回路の電位差)

誰でも分かる電気基礎講座テキストp44のQ3でa-b間の電圧というのはどこの部分ですか?
どの部分か分かるようにマーキングお願いします。
あと、解答でなぜ最も低い部分を0Vと置くのか、a-b間の電圧で120-100になるのか 全体的に分かりやすい解答をお願いします!

まず、a-b間の電圧については画像を添付しますのでご覧いただければと思います。

もっとも低い部分を0Vとする理由ですが、これは勿論どこを基準電圧と置いても構いません。電圧というのは相対的なもので、物理学的に言って究極的には宇宙の果ての無限遠点をゼロとします。

とはいえ、この回路ではそんな難しいことを考える必要は無く、100Vの電池が2個直列、それに対して20Ωと30Ωの2本の抵抗が直列になっている、というだけの回路と考えれば良いですから、一番下の線を0Vと置くことで、a点は+100V、20Ωの上の点は+200V、そしてオームの法則より20Ωの両端の電圧は80V、30Ωの両端の電圧が120Vということで、b点の電圧は、一番下の線を0Vとした場合に相対的に+120Vである、と考えたわけです。

もちろん、a点が0V、20Ωの上の線が+100V、30Ωの下の線が-100V…というようにa点を基準電位の0Vと考えても、a-b間の電圧差が20Vとなることに変わりはありません。

SAT電験3種講座 機械 質問回答(電験3種 平成25年 機械 問13 過去問解説 自動制御のブロック線図)

機械H25、問13
フィードバッグ制御についての問題です。
入力と出力の関係がわかりません。

この手の問題は、2入力(V1とD)に対して1出力であり、線形のシステムですから、重ね合わせの原理を用いて計算すると答えを求めることができます。

まず、D=0としてV1とV2の関係を求めます。

どこを1と置いても良いのですが、G1の入力を1とすると、G1の出力はG1、G2の出力はG1G2、したがってV1=1+G1G2です。

つまり、

  • V1=1+G1G2のときV2=G1

になるので、V2/V1=G1/(1+G1G2)からV2={G1(1+G1G2)}V1です。

次に、V1=0としてDとV2の関係を求めます。

V2=1のとき、G2の出力はG2、G1の出力は-G1G2ですから、このときのDは1+G1G2です。つまり、

  • D=1+G1G2のときV2=1

になるので、V2/D=1/(1+G1G2)からV2={1/(1+G1G2)}Dです。

以上2つを足し合わせることで、答えが求まります。

一見、この方法でもV1とDを共に考えて1つの式で答えが求まる気がしてしまいますが、V1とDは完全に独立した入力なので相互作用は発生しません。したがって、入力対出力ごとに式を立てて、それを重ね合わせる(足し合わせる)ことで答えを求めます。

SAT電験3種講座 理論 質問回答(デジタル測定器の性能)

理論のテキスト(直流電力の測定と誤差)のP88の三行目、「近年は、内部抵抗が非常に大きくて事実上無視できるほどの値を持ったデジタル測定器が主流になっている」とありますが、確かに電圧計は内部インピーダンスが高いほど正確だとわかります。
しかし電流を測定する場合、内部インピーダンスが高いと測定器による電圧降下が大きくなるので、正確な測定ができないのでは?と思いました。講義内容から少し離れた質問ですが、疑問に感じたので質問させていただきます。

御指摘の通り、内部抵抗が非常に高いのが有利なのは電圧計の場合です。もちろん電流計の場合は逆で、内部抵抗が非常に小さい方が有利です。これは説明しなくとも分かっているだろうという前提で、

「内部抵抗が非常に高い測定器が主流なので、性能の良い電圧計が容易に手に入ります(そして電流計の場合も同様に、内部抵抗が低い測定器が手に入るようになりました)」

のカッコ内の部分を省略しておりました。

SAT電験3種講座 法規 質問回答(電験3種 平成22年 法規 問13(b) 風圧荷重計算)

法規19章の例題について解説をお願いします

この問題は、まず出題文に

氷雪の多い地方のうち、海岸地その他の低温期に最大風圧を生ずる地方以外の地方において

とありますから、これは電技解釈58条より、乙種風圧荷重を用いるということを読み取らなければなりません。これは条文を覚えておかねばならず、大変面倒な問題のように思えますが、出題のパターンは決まっていますので、過去問の中から類題を確認しておけばある程度は慣れるかと思います。

次に、乙種荷重の計算式です。これも覚えなければならないのですが、パターン化していますので、過去問の類題で慣れるしかないでしょう。乙種荷重は、

  • 厚さ6㎜の氷が電線の周囲に付着した状態

を想定しています。この時に用いる計算式も電技解釈の中に規定されており、これは電線の直径をdメートルとすると、

  • 490×d+490×0.012

という式で求めることとなっています。

さて、問題に提示されている図を見ますと、これは直径3.2㎜の線が19本束ねてある図になっています。電線の直径は、横から見て最も太い部分ですから、真ん中の3.2㎜×5本分=16㎜が直径となり、メートル単位に直すと0.016m、これをdに入れて計算します。すると、

  • 490×0.016+490×0.012=13.72N

が答えとなります。

以上のように、法律の規定と計算式の両方を知らないと絶対に解けない問題なので覚えにくくて面倒ではあるのですが、出題はパターン化されていますので、似たような問題を過去問題の中からチェックし、実際に計算してみることで慣れるしかないかと思います。

SAT電験3種講座 法規 質問回答(電験3種 平成16年 法規 問11 張力荷重計算)

法規18章の例題の解説を詳しくお願いします。 図解つきで宜しくお願いします。

この電柱は、左側に電線で、上が9000N・下が4000Nの力で引っ張られています。仮に右側の支線が外れてしまったらどうなるかといいますと、電柱が地面に接している点を中心として左側に倒れてしまいます。この運動は、完全に倒れてしまうまで左側に90度の角度分だけの回転運動です。

物体が力によって回転運動をするとき、その回転力のことをモーメントと言います。例えば、電柱の長さが長く、電柱を引っ張る電線の取り付け位置が高ければ高いほど、そして電線が電柱を引っ張る力が強ければ強いほど、電柱は強い力で倒されることが分かります。モーメントの値は、

  • (回転中心から、力が及ぼされる点までの距離)×(回転させようとする力の大きさ)

で求めることができます。以上のことから、2本の電線が電柱を左側に倒そうとする回転モーメントを求めると、

  • 下側の電線・・・4kN×8m=32[kN・m]
  • 上側の電線・・・9kN×10m=90[kN・m]
  • 合計・・・32+90=122[kN・m]

となり、122[kN・m]のモーメントであることが求められます。

支線が、このモーメントと全く同じ値で右側に引っ張ることにより電柱が倒れるのを防ぎますから、支線の取り付け点の高さが8mであることを考えると

  • 8×T=122

となればよいので、支線は電柱から90度右側に

  • 122÷8=15.25kN

の力で引っ張ればちょうど釣り合うことになります。

しかし、支線は電柱をまっすぐ右に引っ張ることはできません。この電柱を斜めに引っ張っていますので、その斜めの力の水平方向右側成分が15.25kNになるためには、添付の図の通り、

  • 5:3=x:15.25

となりまして、これより25.4kNが支線の荷重であることが求まります。
houki18

 

 

2015-2016年版 SAT電験3種講座テキスト誤植訂正(理論編)

2016年まで出していたテキストについての正誤表です。2017年頭より新テキストに移行しましたので御注意ください。

  • P.6下から2行目

0.2S→0.02S

  • P.7下から5行目

抵抗率R→抵抗率ρ

  • P.7下から1行目

1×10^-6→1×10^-6×π

15Ω→4.78Ω

  • P.13下図

I2b→I3b

  • P.44下から7行目

37.5-j30→22.5-j30

  • P.44下から4行目

(37.5+IR)→(22.5+IR)

  • P.56上図

Xm→V

V→Vm

  • P.60図

左側のV2→V3

  • P.61下図

左側のA2→A3

右側のA2→A1

  • P.82上から10行目

慣例的にeで表す→慣例的にeやqで表す

P.83下から3行目

クーロン力は電界と同じ向き→クーロン力は電界と平行の向き

  • P.85下図

左側端子のv1→vi

右側端子のv1→vo

SAT電験3種講座 理論 質問回答(電験3種 平成26年 理論 問5 コンデンサ回路におけるキルヒホッフの法則)

平成26年度 理論 問5について、よく理解できないので詳細な解説を教えてください。宜しくお願いします。

まず、キルヒホッフの電流則の拡張として、電流を電荷量に置き換えて解きます。

上の10μFに左から右に流れる電荷量をQ1、20μFに左から右に流れる電荷量をQ2、下の10μFに左から右に流れる電荷量をQ3とします。

まず、b点において、キルヒホッフの電流則(の拡張、電荷の保存則)より、

  • Q1+Q2+Q3=0

次に、コンデンサの両端に生じる電圧を求めると、コンデンサに流れた電荷量Q、静電容量C、電圧Vの間にはQ=CVの関係があることを利用して、

  • 上の10μF:V1=Q1÷0.00001(左側が+)
  • 20μF:V2=Q2÷0.00002(左側が+)
  • 下の10μF:V3=Q3÷0.00001(左側が+)

の電圧が発生することが求まります。

ここで、接続された電池とコンデンサ両端の電圧の関係から、

  • V1-V2=Q1÷0.00001-Q2÷0.00002=20V・・・①
  • V2-V3=Q2÷0.00002-Q3÷0.00001=10V・・・②
  • V1-V3=Q1÷0.00001-Q3÷0.00001=30V・・・③

という関係が成り立ちます。

  • ①式の両辺に0.00002を掛けると、2Q1-Q2=0.0004・・・④
  • ②式の両辺に0.00002を掛けると、Q2-2Q3=0.0002・・・⑤
  • ③式の両辺に0.00001を掛けると、Q1-Q3=0.0003・・・⑥

ちなみに、④⑤⑥は独立した3式に見えますが、2式から残りの1式を導出できるので、実質は2つの式です。ここでもう一つ、Q1+Q2+Q3=0を利用します。

ここで①式に、Q1+Q2+Q3=0を変形したQ1=-Q2-Q3を代入すると、

  • -2Q2-2Q3-Q2=-3Q2-2Q3=0.0004・・・⑦

⑥式にQ1=-Q2-Q3を代入すると、

  • -Q2-Q3-Q3=-Q2-2Q3=0.0003・・・⑧

⑦式-⑧式を求めると、

  • -3Q2-2Q3+Q2+2Q3=-2Q2=0.0001

となり、Q2は-0.00005クーロンであることが求められます。つまり、20μFのコンデンサには、右から左に0.00005クーロンの電荷量が流れることが分かりますので、コンデンサの両端に発生する電圧は、V=Q/Cより、0.00005÷(20×10^-6)=2.5Vとなります。

 

次に、重ね合わせの原理を用いた解き方です。

まず、上側の20Vの電源を残し、下の10Vをショートさせた回路を考えます。するとこれは、20Vの+端子から上の10μFにつながり、中の20μFと下の10μFが並列になった30μFを経由して20Vの電源のマイナス端子に至る回路になります。コンデンサに電荷Qが流れ込んだとき、その両端に発生する電圧Vと静電容量Cの間にはQ=CVの関係がありますから、10μFと30μFの直列回路に電流が流れた際、コンデンサの両端に発生する電圧は静電容量に反比例します。したがって10μFと30μFの両端に発生する電圧は3:1になりますから、上の10μFには左側を+にして15V、中の20μFと下の10μFには右側を+にして5Vの電圧が発生します。

次に、下側の10Vの電源を残し、上の20Vをショートさせた回路を考えます。するとこれは、10Vの+端子から上の10μFと中の20μFの並列、合計30μFを通り、下の10μFを経由して電源のマイナス端子に至ります。これも上と同様にして、10Vのプラス端子-30μF-10μF-マイナス端子というコンデンサの直列回路になりますから、30μFと10μFの電圧比は1:3となり、上の10μFと中の20μFには左側をプラスとして2.5V、下の10μFには右側をプラスとして7.5Vの電圧が発生することがわかります。

以上の二つを重ね合わせて20μFのコンデンサに発生する電圧を求めると、20Vを残した回路では右側を+として5V、10Vを残した回路では左側を+として2.5Vが発生しますから、それらを差し引きして右側を+として2.5Vが答えとなります。