「理論」カテゴリーアーカイブ

SAT電験3種講座 理論 質問回答(電験3種 平成25年 理論 問6 直流回路の計算・テブナンの定理)

60v,80v双方の回路で10Ωに流れる電流値の計算の解説が省かれており、自力では理解できません。詳しい解説をお願いします

まず、60Vを残した回路について考えます。

60Vの電池の+極から順番に見ると、まず40Ωが入り、その次に「40Ωと40Ωの並列抵抗」が入るのと同じことになります。

40Ωと40Ωの並列抵抗は20Ωですから、電池から見ると、これは40+20の60Ωの抵抗が接続されているのと同じに見えます。したがって、電池から流れ出る電流は、オームの法則から1Aと求まります。

さて、この1Aの電流が、「40Ωと、10+30の40Ωを並列にした20Ω」に流れる場合、その両端の電圧は、1A×20Ω=20Vと求まります。という事は、「10+30の40Ω」の両端に掛かる電圧も20Vですから、10Ωに流れる電流は、20V÷40=0.5Aと求めることができます。

80Vの方も同様に考えます。

80Vの電池の+極から見ていくと、まず60Ωが入り、次いで「60Ωと、10+20=30Ωの並列」が入って-極に戻ります。

60Ωと30Ωの並列抵抗を計算すると20Ωですから、電池から見ると60+20=80Ωの抵抗が接続されているように見えます。したがって、流れ出す電流は1Aです。

ここで、「60Ωと30Ωの並列抵抗の20Ω」に流れる電流が1Aということは、その両端に発生する電圧は20Vです。したがって、30Ωに流れる電流は、20÷30=2/3Aですから、10Ωに流れる電流は2/3Aと求まります。

  • 60Vの場合は、10Ωの左→右に1A
  • 80Vの場合は、10Ωの右→左に2/3A

以上を足し合わせることにより、60Vと80Vが両方存在する場合に10Ωに流れる電流は、左→右に1/3Aと求まります。

SAT電験3種講座 理論 質問回答(コイルとコンデンサのベクトル図の誤りについて)

疑問点というよりも、恐らく表記ミスだと思いますが一応その個所について質問という形で確認をお願いします。
前回の質問についてご丁寧なご回答をありがとうございます。確かにRLC直列回路のインピーダンスの説明の結論のところでは少し違和感を感じながら説明されている感じがしますね。それで、理論編の14RLC直列回路も拝聴したところ、コンデンサのインピーダンスの説明のところでもDVD画面の説明文の中で途中から、本来コンデンサとあるべきところだと思うのですが、コイルという表記になっています。テキストではありません。コイルのインピーダンス:jwc/1=-j・wc/1とあるのはコンデンサーのインピーダンスの間違いだと思います。
当初はねこ電のところでもコンデンサとコイルの言い間違いではないかというところがありましたので、相当混乱しましたが理解が進むと簡単な間違いなんだなと自分でもわかるようになりました。質問によって確認してほしいとのことでしたので改めて質問しました。

**様

いつもながら恐れ入ります。メール頂きありがとうございます。

今回の講座では、種本となる「丸覚え!電験三種 公式・用語・法規の超重要ポイント」を元に、まずは書籍内の図を外部業者にトレースしてもらい、そのデータを用いて私がPowerpoint上でビデオ収録用の資料を作成して解説しています。さらに、ビデオ収録が2015年の夏、テキスト執筆が2015年暮に初版、2016年暮に改訂版という流れでして、図のトレースミスや私の勘違いなどもあり、100%完璧な講座とはならなかったことは深く反省し今後の改善につなげていきたいと考えております。

重ね重ね、お付き合いいただき本当に有難うございます。今年2017年の夏に講座ビデオ、テキスト共に全面的に改定する予定ですので、反省を踏まえて出来る限りミスや解説漏れなどの無いように尽くしていきたいと考えております。

SAT電験3種講座 理論 質問回答(電験3種 平成26年 理論 問5 コンデンサ組み合わせ回路の電圧)

10Fの両端が15V、30Vの両端が5Vとなるのは理解できるのですが、「b側を+として5Vとなる」ところで、なぜプラスになるのか理解できておりません。同様にP25のa側をプラスとして2.5Vという符号の部分も理解できておりません。恐らく、電源±の極性とコンデンサの繋がる電極によるもの?と思っているのですが、補足いただけますでしょうか。

上側の20Vの電源だけを残した回路で、10F・30Fともに溜まっている電荷がゼロ(コンデンサの両端の電圧がゼロ)の状態から電池を接続することを考えます。

電流は当然、電池の+端子から-端子に向かって流れますから、10Fのコンデンサは左→右に、30Fのコンデンサは右→左に電流が流れます。コンデンサの極板間に発生する電圧は、電流が流れ込む側が+、電流が流れだす側が-となるため、10Fのコンデンサは左側が+、30Fのコンデンサは右側が+となるわけです。

したがって、a-b間について考えると、b側に+の電圧が発生するわけです。

同様に、10Vの電源だけを残した回路では、電流は電池の+端子から-端子に向かって流れるため、30Fは左側が+、10Fは右側が+になります。

恐らく、電源±の極性とコンデンサの繋がる電極によるもの?

その通りです。電子の流れに沿って正確に言いますと、

  • 電池は-端子から+端子に向かって電子を流す
  • コンデンサの、電池の-端子側につながる極には、電池から電子が流れ込んで溜まっていく。
  • コンデンサの、電池の+端子側につながる極からは、電池の+端子に向かって電子が抜け出ていく。
  • したがって、コンデンサの-端子側につながる極は電子過剰、+端子側につながる極は電子不足になる。
  • 電子はマイナスの電荷をもっているため、電子過剰な極板は-、電子不測の極板は+に帯電する

ということになります。

電験3種講座の理論のテキストP24、25において「すなわち、b側を+として5V、a側を+として2.5Vとなるわけです」とありますがどう考えたらそのような結論に至るのでしょうか。

この問題の解説は、重ね合わせの原理を用いて、

  1. 20Vの電源を残し、10Vの電源を無いものとして(短絡して)求めた、20Fのコンデンサの両端の電圧
  2. 10Vの電源を残し、20Vの電源を無いものとして(短絡して)求めた、20Fのコンデンサの両端の電圧

を足し合わせることで答えを求めています。

まず1つ目です。上側の20Vの電源だけを残した回路で、10F・(20Fと10Fを並列にした)30Fともに溜まっている電荷がゼロ(コンデンサの両端の電圧がゼロ)の状態から電池を接続することを考えます。電池からの電流は、+端子から-端子に向かって流れますから、10Fのコンデンサは左→右に、30Fのコンデンサは右→左に電流が流れます。

コンデンサの極板間に発生する電圧は、電流が流れ込む側が+、電流が流れだす側が-となるため、10Fのコンデンサは左側が+、30Fのコンデンサは右側が+となるわけです。流れた電荷量をQとすると、コンデンサの極板に発生する電圧はQ/Cですから、コンデンサが直列になっている場合、コンデンサに生じる電圧は静電容量に反比例します。

したがって、10Fの両端に15V、30Fの両端に5Vの電圧が発生し、30Fの両端に生じる5Vは右側が+の電圧です。

2つ目は、下側の10Vの電源を残して30Fと10Fが直列になった回路と見なせます。やはりコンデンサに生じる電圧は静電容量に反比例するため、30Fに2.5V、10Fに7.5Vが生じ、30Fの両端に生じる2.5Vは左側が+の電圧です。

以上より、

  1. コンデンサの右側を+として5V
  2. コンデンサの左側を+として2.5V

を差し引きして、右側が+2.5Vという答えが求まります。出題文に忠実に言うと、「+2.5Vのa点から+5Vのb点を見ると、b点は相対的に+2.5Vに見える」ということです。

「この合計が20Vであるためには10Fの両端が15V、30Fの両端が5Vとなることがわかります」これはどのような方式を用いてこのようになるのでしょうか?例えば、

  • 抵抗の分電圧は比例配分
  • 抵抗の分路電流は反比例配分

のような公式はあるのでしょうか?

コンデンサの性質として、Qクーロンの電流が流れた場合、発生する電圧はQ/Cボルトとなりますから、コンデンサが直列の場合、それぞれに発生する電圧は静電容量の反比例配分になります。

オームの法則でおなじみの電圧・電流・抵抗とは別に、「流れた電荷量Qクーロン」が出てくると、一体これは何なのかと難しく思いがちですが、電流×時間=電荷量であることを覚えておけば大丈夫です。

SAT電験3種講座 理論 質問回答(コイルが電力を消費しない理由)

電圧と電流の位相差が90°のコイルは電力を消費しないのはどうしてですか?

コイルの電圧・電流の様子について図を描きましたのでご覧ください。

まず、

  • 素子の上側を電圧の+
  • 上から下に電流が流れるのを+の電流

と決めます。

抵抗は、電圧が+であれば電流も+、電圧が-なら電流も-です。つまり、

  • 電圧・電流共に同じ符号なら電力を消費する素子

であることを意味します。

電池は、電圧が+であれば電流が-、電圧が-なら電流は+です。つまり、

  • 電圧・電流が互いに逆符号なら、電力を生み出す素子

であることを意味します。

ここでコイルの電圧と電流の波形を見てみます。すると、

  • 電圧+電流-
  • 電圧+電流+
  • 電圧-電流+
  • 電圧-電流-

を1/4周期ごとに繰り返していることが分かります。これは、コイルは電力を消費せず、受け取っては放出、受け取っては放出…を繰り返していることを意味します。

以上より、コイルは電力を消費しないことが分かります。ちなみに、コイルが受け取った電力はどこに行ったのかというと、磁気エネルギとして蓄えられています。電力を受け取る1/4周期では、電気エネルギを磁気エネルギに変換し、電力を放出する1/4周期では、磁気エネルギを電気エネルギに変換している、それがコイルの動作です。

なお、コンデンサの場合はこの図と電流の波形がプラスマイナス逆ですが、やはり働きとしては同様で、電力を消費せず受け取っては放出するだけであることが分かります。コンデンサの場合、電気エネルギを静電エネルギに変換し、静電エネルギを電気エネルギに変換することを繰り返します。

SAT電験3種講座 理論 質問回答(電験3種 平成22年 理論 問7 単相3線式回路の回路電流と消費電力)

理論のテキストp58の例題の質問です。解説に「したがって、重ね合わせの原理より、a→bと流れる電流とb→cと流れる電流が重なるb端子に流れる電流は打ち消し合ってゼロとなります。」の部分が理解できませんでした。重ね合わせの原理をどのように使って電流が重なるb端子に流れる電流は打ち消し合ってゼロになるのですか?そしてどうして電力を消費する負荷は、a端子とc端子につながる右端の縦素子のみなのですか?

a-b間、b-c間は、どちらもR=4ΩとX=3Ωが2個ずつ直列に入って、合計R=8ΩとX=6Ωの回路に見えます。ここに、a~b間とb~c間に同じ電圧・同じ位相の交流電圧をかけているので、a→bに流れる電流とb→cに流れる電流は同じ値・同じ位相になります。

ここで、a→bの電流が流出する値と、b→cの電流が流入する値は同じ値で逆位相(流入と流出を比べているので)ですから、足し合わせるとゼロになります。当然、回路の真ん中に入っている4Ωには電流が流れないため、電力も消費しません。

14章RLC直列回路のp.58の過去問に関してですが、真ん中のb端子に電流が流れない理由について教えてください。重ね合わせの原理より、と記述されてありますが、どのように作用し電流がゼロになるのかいまいち理解できません。また、この回路(単相3線式)において、真ん中の線に電流が流れる場合もあるのでしょうか?電流が流れない理由が重ね合わせの原理ならば、真ん中の線に流れる電流は常に打消しあいゼロとなるのではないでしょうか?

この回路は、a-b間とb-c間の回路に分けて考えます。

a-b間は、8+j6Ωの負荷に100∠0°の電圧、b-c間も8+j6Ωの負荷に100∠0°の電圧が掛かっています。したがって、a-負荷-bと流れる電流と、b-負荷-cと流れる電流は、同位相・同振幅となります。

ここでb端子につながる線について考えると、a-負荷-bの回路では電流の流出、b-負荷-cの回路では流入(もちろん交流ですから、タイミングによって流入・流出は逆転します)ですから、b端子に流れる電流は常に差し引きゼロということになります。

もし、a-負荷-bの回路と、b-負荷-cの回路で負荷インピーダンスの値が異なっていれば、真ん中のb端子に流れる電流が差し引きゼロにはなりませんから、その場合は電流が流れることになります。

理論の交流回路で、フェーザ表示の過去問説明の所です。ab間に交流100Vがかかり、bc間にも位相差無しの交流100Vがかかってます。この時に端子ac間の電圧は200Vにならないのはなぜでしょうか?ここが200Vならば真ん中の回路にある抵抗やコイルにも電流が流れると思います。

58ページの例題の件かと思いますが、もちろんac間の電圧は200∠0°ボルトになります。そして、

  • a→右上の4+j3Ω→真中の4+j3Ω→bと流れる電流と、
  • b→真中の4+j3Ω→右下の4+j3Ω→cと流れる電流

は同一ですので、打ち消しあってbの線に流れる電流はゼロとなり、回路全体で考えると、200Vの電圧に右上の4+j3Ωと右下の4+j3Ωが接続されているものと同一の結果となります。

SAT電験3種講座 理論 質問回答(電線に流れる電流と磁界の強さ)

磁界の強さの式で、分母に2a(直径)になりますが、講義の中で、2πrを掛けると2aになると言っていますが、どのような式からそうなるのかを教えてもらえますか?本質が解らないと忘れてしまうためお願いします。

ビオ・サバールの法則をチラッと頭において、中途半端なことを口に出したため混乱させてしまいました。申し訳ありません。

まず、直線の電線の上にIアンペアの電流が流れている場合を考えます。小学校の電磁石の実験でもお馴染みのように、電線の周りには磁界が発生して方位磁針の向きを変えたりする現象が起きます。

このとき、電線を中心として半径rの円を考えます。この半径rの円周の長さは2πrで求められます。磁界は、電線を中心に同心円を描くように発生しますから、この円周の上での磁界の大きさはどこも一定です。離れれば離れるほど弱くなります。

円周上の磁界の大きさをHとすると、

  • H×2πr=I

となり、

  • H=I/(2πr)

です。つまり、電線に流れる電流の値そのものを、円周の長さに沿って分散した大きさが磁界の大きさになるわけです。磁界の単位は[A/m]ですが、これは磁界の大きさ×長さ=電流になることを示しますから、単位からも納得できるかと思います。

つぎに、この電線を半径aのコイル状に巻いた場合を考えます。円の中心部分は、コイル状の電線のどの部分からも距離aであり、1回巻のコイルの円周の長さは2πaですから、

  • I/(2πa)×2πa=I

…になりそうな気がするのですが、実はそうなりません。

これが何故そうなるかというと、ビオ・サバールの法則を用いて証明しなければなりません。

ビオ・サバールの法則(Wikipedia)

直線状の電線から距離r離れた場所の磁界は

  • H=I/(2πr)

になると書きましたが、これは無限に続く直線電流の、ごくごく短い部分が距離rの点に作る磁界を、無限の長さ手前から無限の長さ奥まで全て加算した結果がそうなるのです。つまり、本質的には単純に電線を含む平面を輪切りにし、そこから距離rの点だけを考えれば良いわけではなく、空間的に広く分布した領域を考えなければいけません。

以上のことを踏まえて、電験3種の試験では、

  • 直線状電流:H=I/(2πr)
  • N回巻コイル:H=NI/(2a)
  • 環状ソレノイド:H=NI/(2πr)

を覚えておけばいいよ、という事になるわけです。

SAT電験3種講座 理論 質問回答(電験3種 平成17年 理論 問15(b) キルヒホッフの法則の使い方)

理論16-17ページ例題i3のループが4Ωと16Ω(下側)だけになるのか、理解ができません。方程式を立てる為に下側だけにしているのでしょうか?詳しくご教授いただきたくメールいたしました。

キルヒホッフの法則には、

  • 一点から始まって同じ場所に戻ってくるループの中で、電圧の合計はプラスマイナス0
  • 電線の接続点において、その点に流れ込む電流の合計と流れ出す電流の合計は同じ

という2つの法則(電圧の法則と電流の法則)があります。これに照らして、3本の方程式を立てますと、

  • Aのループは16Ωと80Ωと4Ωの両端の電圧の合計がゼロ
  • Bのループは4Ωと16Ωと80Ωの両端の電圧の合計がゼロ
  • Cのループは4Ωと16Ωの両端の電圧の合計が40V

ということになり、未知数が3つで式が3本あるので方程式が解けることになります。

もちろん、例えばCのループの代わりに

  • 上側の16Ωと4Ωの両端の電圧の合計が40V

という方程式を使っても良いですし、

  • 上の16Ωと真中の80Ωとしたの16Ωの両端の電圧の合計が40V

で式を立てても勿論値を求めることができます。しかし、3つの未知数を求めるのに独立な式が3本あれば良いわけですから、何も複雑な式を採用する必要は無く、例としてテキストに挙げたABCの3つを使用することにしたわけです。

問題では、回路全体の電流I3を求めよとなっていますが、解答はi3を求めています。i3は、電源のプラス端子~左下の4Ω~右下の16Ω~電源のマイナス端子の部分にしか流れない電流のように思いますが、何故これが回路全体の電流I3と同じになるのでしょうか。

結論から言いますと、i3=I3で、これを求めれば回路全体に流れる電流I3を求めることができます。しかし、それなら回路の上側の16Ωと4Ω、そして真ん中の80Ωは無関係のような気がしてしまいますが、そうではありません。何故かと言えば、

  • 左下の4Ωにはi3-i1
  • 右下の16Ωにはi3-i2

が流れていて、このi1やi2は、上側の16Ωと4Ω、真ん中の80Ωによって影響を受ける値だからです。もし、i1=i2=0であれば、上の16Ωと4Ω、80Ωは無視してしまって構いませんが、実際にはi2もi3も流れるため、i3もそれらの影響を受け、キルヒホッフの電圧則・電流則に従って各部の矛盾がない値に落ち着くわけです。

なお、キルヒホッフの法則を用いて方程式を建てる場合、ループの取り方は色々と考えられます。例えば、この回路でi3を、電源のプラス~上側の16Ω~上側の4Ω~電源のマイナスと取って計算しても構いませんし、それでも同じ結果となります。

定義が違っても、連立方程式を解いた結果が同じ答えになるというのは妙に感じるかもしれませんが、キルヒホッフの法則を適用するためのループは、本当にその向きに電流が流れているかどうかは重要ではなく(もし計算の結果、定義とは逆の向きに電流や電圧が発生していれば、求めた数値がマイナスになるだけです)、電圧の値や電流の値が理論的に矛盾がない条件であることだけが重要ですから、ご質問頂いたような、肌身との感覚のずれが起きてしまう時もあるわけです。

(以下、2017年7月12日追加)

5のキルヒホッフの法則でループの例題が解からなく、これはテブナンの定理とかでも答えが出せるのでしょうか?ループになること自体が理解できていません。(電流が分流して16Ωと4Ωにaからd側の方向に流れるのでは?)

キルヒホッフの問題ですが、原点に立ち返って考えてみます。

電気回路で電流が流れるということは、必ず周回(ループ)になっているはずです。乾電池でもコンセントでも、出てきた電流は必ず同じだけ戻っていきます。

そして、そのループの中に抵抗や電源が複数含まれていても、それらの発生電圧と電圧降下は必ず辻褄が合っているはずです。

これをもとに考えると、i1のループは、

  • 左上の16Ωの両端に発生する電圧(左側を正とする)+真中の80Ωの両端に発生する電圧(上側を正とする)+左下の4Ωの両端に発生する電圧(右側を正とする)=ゼロV

となるはずです。同様にして、i2のループでは、

  • 右上の4Ωの両端に発生する電圧(左側を正とする)+右下の16Ωの両端に発生する電圧(右側を正とする)+真中の80Ωの両端に発生する電圧(下側を正とする)=ゼロV

となります。この時に気を付けるのは、現実の回路で抵抗の両端の電圧がどちらが正であるかは関係なく、あくまでもループを定義した中での合計電圧の辻褄が合う、という事だけに注目しているという点です。

そしてi3のループについては、

  • 左下の4Ωの両端に発生する電圧(左側を正とする)+右下の16Ωの両端に発生する電圧(左側を正とする)=40V

という条件になります。もちろん、

  • 左上の16Ωの両端に発生する電圧(左側を正とする)+右上の4Ωの両端に発生する電圧(左側を正とする)=40V

という条件を用いても構いません。

以上の式を連立させることで各々の電流値が求まることになります。

キルヒホッフの法則を立てる際、どうしても現実に流れる電流の向きに引き摺られそうになりますが、「現実の回路で抵抗の両端の電圧がどちらが正であるかは関係なく、あくまでもループを定義した中での合計電圧の辻褄が合う」という点に気を付けて頂ければ理解しやすいかと思います。

SAT電験3種講座 理論 質問回答(FETの働きとP型半導体・N型半導体の性質)

電験三種 理論編のP131の1~2行目にG-S間にG側がプラスの電圧をかけます。すると、チャネル部分にはP型半導体の中に散在している自由電子が引き寄せられ・・・とありますが、P型半導体は、自由電子が不足している性質なので、誤りではないでしょうか?
正しくは、
すると、チャネル部分にはN型半導体の中に散在している自由電子が引き寄せられ・・・ではないですか?確認をお願いします。

御質問承りました。

結論を先に言いますと、間違いではありません。以下、理由を説明いたします。

N型半導体は、電子が過剰となり余り気味で、P型半導体は電子が不足気味になっています。ところが、これはN型半導体=電子しか存在しない、P型半導体=ホールしか存在しないという意味ではありません。

半導体のイメージは、学校のプールに大量のビニール製ボールが浮いているようなものです。ボール1個1個が電子です。このとき、ボールが水面を完璧にぴったりと1個分の隙間もない状態にしたのが真性半導体、ボール1個や2個の隙間が空いているのがP型半導体、全面を埋め尽くしたボールの上に1~2個が余って乗っかっているのがN型半導体です。

テキストの例ではP型半導体ですから、プールの隅に1~2個分の隙間が空いている状態です。このとき、風を起こしてボールを隅に押しやれば、その力で押しやられたボールが1~2個余った感じになり、他のボールの上に乗っかってしまうことが考えられます。このとき、風上側ではボールが抜けた穴が広がっているのですが、押しやられた隅っこだけを見ると、あたかも電子が余って上に乗っかっているN型半導体のように見えます。これが、「チャネル部分に集合した自由電子により、チャネルの下部分がN型半導体化」する理由です。

半導体の性質のなかで、「多数キャリア」「少数キャリア」という言葉があります。N型半導体では電子が多数キャリアでホールが少数キャリアですが、これは上記のプールの例で示したように、N型半導体といえども全体の電子の偏りにより、一部で電子が不足したホールが出来ることがあってそれが電子を運ぶ役割をすることがあることを示しています。もちろん、全体で見れば圧倒的に余剰電子が電流を運ぶ場合が多いため、それらを多数キャリアと呼ぶわけです。P型半導体ではその逆で、ホールが多数キャリアですが、電子の偏りによって一部が電子余剰になることがあり、それが電流を運ぶ役割をする場合に少数キャリアといいます。

あと、理論の講座を一通り学習し終わったら、理論の過去問講座に進むのがいいのでしょうか?それとも機械の講座に進むのがいいのでしょうか?

勉強の進め方の適性は人によって異なるので、絶対にこうするのが正しい!とも言えないのですが、理論の過去問練習に進むのが無難かと思います。機械にしても電力にしても、そして法規の計算問題にしても、まずは理論を正しく理解していなければなりませんので。

あと、過去問の解き方ですが、いきなり動画で解説を見る前に自分で解くほうがいいでしょうか、手も足もでないと時間の無駄になりそうで、解説を覚えるのでも通用するならそうするつもりです

私がかつて大学受験の勉強をしたときは、出題の問題を見ても直ぐに分からない場合、さっさと答えを見てしまい、その答えをなぞって自分で計算することによって覚えました。人によって適不適はあるかと思いますが、個人的にはそれで全然かまわないと思います。

SAT電験3種講座 理論 質問回答(電験3種 平成26年 理論 問15(b) Δ型回路とY型回路の変換とコンデンサによる力率改善)

H26、理論、問15(b)誘導性リアクタンスを求める問題です。
DVD講義の中で、全体抵抗を求めて、リアクタンスを算出するとありました。手順通りに計算すると、

  • 全体抵抗=300V÷12.5A=24Ω
  • X÷|Z|=sinΘ

より、

  • X=0.8×24=19.2Ω

となります。答えは30Ωとなりますので、計算過程が間違っていると思います。他の解法ならわかるのですが、上記方法での解法がわかりません。

まず、

  • 全体抵抗=300V÷12.5A=24Ω

これは正しいです。もっとも、RとXの並列なので、全体「抵抗」ではなく「インピーダンス」です。

  • X÷|Z|=SINΘ

ここが違います。

RとLやCの直列回路であればそれで正しいのですが、並列回路というのがミソです。並列回路は、抵抗やリアクタンス、インピーダンスではなく、逆数であるアドミタンで考えます。

コイルのサセプタンスは(1/X)、抵抗のコンダクタンスは(1/R)、RL合成でのアドミタンスは(1/24)ですから、

  • 力率は(1/R)÷(1/24)
  • 無効率は(1/X)÷(1/24)

で求められます。
ここに値を代入すると、

  • (1/X)÷(1/24)=sinθ=0.8

ですから、

  • (24/X)=0.8

となり、

  • X=24/0.8=30

と求まります。

「並列なので、逆数で考える」というのが慣れないと少し難しいですが、計算自体難しくないですので、慣れていただければと思います。

SAT電験3種講座 理論 質問回答(コイル・コンデンサ・抵抗のベクトル図と誤植訂正)

理論テキストp56のベクトル図ですがRを基準にしてコイルのインピーダンスはjωⅬでjがあるのでベクトルが上を向いており、コンデンサーのインピーダンスは-j/ωcで-jがあるのでベクトルが下を向いていると解釈して良いですか?そしてp60のベクトル図でIRを基準にしておりRに流れる電流はⅤ/Rで、Ⅼに流れる電流は-jv/ωⅬで-jがあるのでベクトルが下を向いており、Ⅽに流れる電流はjωcvでjがあるのでベクトルが上を向いていると解釈してよろしいでしょうか?

その通りです。

これに関連することなのですが理論の17講単相交流電力と力率で講義の32分50秒ごろにベクトル図がでていますが、どうしてコイルのインピーダンスはjωLなのにコイルのインピーダンスのベクトルは下を向いているのですか?そしてp65の例題を解説されている52分34秒にベクトル図がでていますがどうしてコイルのインピーダンスのベクトルは下を向いているのですか?よろしくお願いいたします。

こちらは、大変申し訳ございませんが、講義に使う図版をトレースして起こした際に、上下逆にトレースされていたことに気付かないまま使用してしまったというミスでした。
受講生の皆様には、重要な部分で大きな誤りを含んでしまった件につきまして、まことに申し訳ございませんでした。深くお詫び申し上げます。
何卒よろしくお願い申し上げます。