「平成26年理論」タグアーカイブ

電験3種過去問解説 平成26年理論問13

オペアンプを用いた増幅回路の増幅率の公式だけを暗記していた人には解けない問題です。

オペアンプは、次のような動作をします。

  • +入力端子の電圧>-入力端子の電圧のとき…出力電圧はどこまでも上昇する
  • +入力端子の電圧<-入力端子の電圧のとき…出力電圧はどこまでも下降する
  • +入力端子の電圧=-入力端子の電圧のとき…出力電圧の変動は止まる
  • 入力端子には電流が流れ込まない。出力端子はいくらでも電流を流しだし、あるいは吸い込むことができる

この性質を利用し、出力端子から入力端子側にフィードバックさせることで、入力電圧が微弱な変化をしてもすぐにそれに追従して、常に+入力端子と-入力端子の電圧が同じ電圧となる状態で使用するのがオペアンプ回路です。

さて、題意の回路において、仮にVIN=VOUT=5Vの状態を考えます。すると、オペアンプの-入力端子も5Vであり、回路内には一切電流が流れない状態で安定します。

ここで入力電圧を3Vに下げると、20kΩの右側が5V、左側が3Vですから、20kΩには右→左に電流が流れます。この電流はオペアンプの出力端子→10kΩ→20kΩ→入力端子と流れるので、オペアンプの-入力端子の電圧は5Vより下がります。すると、オペアンプの出力電圧は上昇します。どこまで行けばオペアンプの出力電圧の上昇が止まるかというと、-入力端子の電圧が5Vになった時点で止まることになります。

10kΩと20kΩに流れる電流は同一値ですから、20kΩの両端の電圧が2V、そして10kΩの両端の電圧が1Vとなればこの条件に合致します。したがって、出力電圧は5+1=6Vです。

電験3種過去問解説 平成26年理論問9

LC共振回路の共振周波数は、1/(2π√LC)で求められます。角周波数ωで書けば、ω=1/√LCです。

したがって、LCの積が大きいほど共振周波数は下がることになります。

回路A…ω=1/√LC

回路B…ω=ω=1/√2LC

回路Cは、コイルが2個直列、コンデンサが2個直列です。直列コンデンサの合成静電容量はC/2となります。

コイルの直列の場合、相互インダクタンスをMとしてL1+L2+2Mで求められますが、ここでは特に相互インダクタンスに関する言及がないので、M=0として構いません。すると、合成インダクタンスは3Lということになります。

以上より、直列接続回路の共振周波数を求めると、

ω=1/√(3L・C/2)=1/√(3LC/2)

となることが求まります。したがって、答えは(5)です。

電験3種過去問解説 平成26年理論問5

この問題は、キルヒホッフの法則でも解けますし、重ね合わせの原理でも解けます。キルヒホッフの法則を使う場合、電圧Vと電流Iの代わりに電圧Vと流れた電荷量Qを使って式と立てます。ここでは重ね合わせの原理を説明します。

重ね合わせの原理は、「複数の電源がある回路において、各部の電圧や電流の値は、ある1つの電源だけを残し、他の電圧源は短絡、電流源は開放して各部の電圧や電流を求め、それを回路内にある電源の個数だけ繰り返したものの重ね合わせになる」というものです。この原理は抵抗だけでなくコイルやコンデンサが含まれる回路でも成立しますので、これを利用します。

①20Vの電源だけを残した場合

20Vの電源を残して10Vの電源を短絡した回路を考えます。すると、20Vの電源のプラス-10μF-(20+10)μF-20Vの電源のマイナスという回路になります。コンデンサの直列回路では、電圧配分は静電容量に反比例しますから、上の10μFは左側を+として15V、20μFと下の10μFは、右側を+として5Vの電圧が発生します。

②10Vの電源だけを残した場合

10Vの電源を残して20Vの電源を短絡した回路を考えます。すると、10Vの電源のプラス-(10+20)μF-10μF-10Vの電源のマイナスという回路になります。したがって、上の10μFと20μFは、左側を+として2.5V、下の10μFは右側を+として7.5Vの電圧が発生します。

 

以上より、20μFのコンデンサには、

①:右側を+として5V

②:左側を+として2.5V

の電圧が発生しますから、これらを重ね合わせると右側を+として2.5Vの電圧が発生することが分かります。つまり、a点から見たb点の電圧は、+2.5Vです。答えは(3)です。