「電験3種」タグアーカイブ

電験3種過去問解説 平成28年理論問6

回路右の200Ωと150Ωは直列だから350Ω、それと100Ωが並列だから並列の式で(350×100)÷(350+100)…

と計算し始めたら負けです。

この問題は、I1とI2の電流比を求める問題です。この比は、電源電圧が何ボルトであろうと変わりません。したがって、I2=1Aと勝手に置いてしまい、そこから逆算してI1を求めれば良いのです。

I2=1Aと置くと、右側100Ωの両端は350Vですから、100Ωに流れる電流は3.5Aです。したがって回路真ん中上の150Ωに流れる電流は、1+3.5=4.5Aとなり、この両端の電圧は4.5×150=675V。したがって電源電圧は350+675=1025Vとなります。このとき回路左の200Ωには、1025÷200=5.125Aが流れますから、I1は5.125+4.5=9.625Aとなります。以上のことからI2/I1を求めると約0.1となります。

電験3種過去問解説 平成25年理論問6

この問題は、テブナンの定理、重ね合わせの原理、キルヒホッフの法則などが適用できる問題ですが、ここではテブナンの定理で考えます。

テブナンの定理は、「どんなに複雑な回路であっても、その回路から2端子を取り出したとき、その2端子から回路側を見ると、1個の電圧源と1本の直列抵抗に置き換えられる」というものです。これは交流回路でも成り立ちます。

「1個の電圧源と1本の直列抵抗」の値の求め方は、その2端子を開放したときに現れる電圧が電圧源の電圧で、その2端子を短絡したときに流れる電流は、電圧源の電圧を直列抵抗で割った値になることから求まります。学習参考書を見ると、テブナンの定理の直列抵抗の求め方は、その2端子から回路内を見たときの抵抗値であるとよく書かれていますが、それはもちろん正しいのですが結果論であって、本来的にはブラックボックスから出ている2端子を開放・短絡することで挙動を求めるというのが本質論だと思います。

(なお、テブナンの定理を利用するためには線形回路である必要があるのですが、その説明については割愛します)

さて、この出題の回路でテブナンの定理を応用するために、回路左側の60V-40Ω-40Ωの部分で切断して取り出します。つまり、60V-40Ω-40Ωの、2つ目の40Ωの両端から2端子を取り出します。このとき、この2端子を開放したときに現れる電圧は30Vです。また、短絡したときに流れる電流は1.5Aです。したがって、60V-40Ω-40Ωの部分は、30Vの電池と20Ωの1本の直列抵抗に置き換えることができます

次に、回路右側の80V-60Ω-60Ωの部分で切断して取り出します。つまり、右側2つ目の60Ωの両端から2端子を出すことになります。このとき、2端子を開放したときに現れる電圧は40Vで、短絡したときに流れる電流は4/3Aです。したがって、この部分は40Vの電池と、30Ωの1本の直列抵抗に置き換えることができます

このようにして置き換えた回路を元の回路に戻して考えると、30V-20Ω-10Ω-30Ω-40Vという回路に置き換えられます。30Vの電池と40Vの電池は互いに逆接続ですから差し引き10V、したがって、回路は10Vの電池と60Ωの抵抗を接続しただけのものと等価になります。

この時10Ωの抵抗に流れる電流は1/6Aですから、10Ωの抵抗で消費される電力はI^2Rより、10/36W、つまり約0.28Wと求まります。

電験3種過去問解説 平成25年理論問8

回路の右側の20Ω-10Ω-20Ω-10Ω・50Ωの部分には電流が流れず、これを切り離せることに気付くかどうかです。

理論的に言えば、これはキルヒホッフの法則です。すなわち、閉回路をぐるっと一周したときの電圧と電流は辻褄が合うというものです。ここで左上の20Ωの左側端子から、その下の50Ω、真ん中下の10Ωに至る線から右側のループには、電源が1つもありません。したがって、この部分には電流が流れないわけです。

これに気付くと、回路は5Vの電池のプラスー5Ωー(10Ωと40Ωの並列)-5Vの電池のマイナスに至る部分だけを考えればいいので、10Ωと40Ωの並列は8Ωですから、5V÷13Ωで約0.4Aが答えとなります。

電験3種過去問解説 平成26年電力問16

(a)

公称電圧の相電圧は、66kV÷√3≒38kVです。この電圧を掛けたときに、3線一括で115A流れたということは、コンデンサCひとつ当たりに流れる電流は115÷3≒38Aです。

アドミタンスは電流÷電圧ですから、38÷38000=1[mS]となり、答えは(2)です。

(b)

B点のa相と接地との2点間にテブナンの定理を用いて考えます。テブナンの定理は、

2点を開放したときに発生している電圧と、2点を短絡したときに流れる電流から、回路を1つの電圧源と1本の直列抵抗 (交流の場合は直列インピーダンス)に置き換えられる

というものでした。これをもう一歩進めると、直列抵抗(インピーダンス)の値は、

回路内の電圧源は短絡、電流源は開放した状態で、その2端子から回路側を見たときの抵抗(インピーダンス)値

に等しいことが求まります。よく参考書類でテブナンの定理を紹介するときは、この定義をもって内部抵抗(インピーダンス)を求めるという説明が多いように思います。

 

さて、問題の回路で、B点のa相と接地の間に発生する開放電圧は相電圧の38kVです。そして、a相と接地から回路側を見たものは、変圧器の巻線(電圧源)を短絡して考えると、3個のコンデンサCとLが並列に接続されている回路と見なせることが分かります。

地絡電流が零ということは、この3個のコンデンサCとLが並列に接続されている回路のリアクタンスが無限大となれば良いので、3CとLが並列共振すれば良いことになります。共振条件は、コンデンサのリアクタンス=コイルのリアクタンスですから、「38kVを掛けたとき115A流れるリアクタンス値」、つまり38000÷115≒330Ωと求まります(四捨五入をせずに計算すれば、きちんと333になります)。答えは(3)です。

電験3種過去問解説 平成26年電力問15

(a)

流量は、A点での鉄管断面積×流速で求まります。したがって、

  • π×0.6^2×5.3≒6

答えは(4)です。

(b)

与えられた式に入れて計算するだけです。

  • H=0+3000×1000/(1000×9.8)+5.3^2/(2×9.8)≒307[m]

つまり、この水車に与えられるエネルギは、「307mの高さから毎秒6㎥の水が落下するときに失われる位置エネルギ」ですから、位置エネルギmghより、

  • 6×9.8×307×0.885≒15980[kW]

答えは(4)です。

電験3種過去問解説 平成24年電力問13

この問題は、電線の弛みの式

  • L=S+8D^2/3S

を知っているかどうかです。

まず30℃のときの電線の長さLを求めます。題意より、

  • L=100+32/300≒100.107[m]

です。60℃のときの電線の長さは、

  • 100.107×(1+30×1.5×10^-5)≒100.152[m]

となるので、これを元の式に戻して、

  • 100.152=100+8D^2/300

より、Dを求めると約2.39となります。答えは(3)です。

電験3種過去問解説 平成28年電力問9

平成26年問7と基本的には同じ問題です。

まず、題意より送電線路の抵抗は0.91Ω、リアクタンスは1.775Ωです。力率cosθ=0.85で、sinθは√(1-0.85^2)≒0.53、電圧降下は200Vです。

以上より、

  • √3I(0.91×0.85+1.775×0.53)=200

を解くと、I≒67Aと求まります。したがって、

  • 「線間電圧22000V、線電流67A、力率0.85の負荷電力」

を求めればよいので、これを計算すると約2170kWとなり、答えは(3)と求まります。

(電卓を使って途中の四捨五入をせず計算すれば、2189に近い値になります)

電験3種過去問解説 平成21年電力問12

答えは(3)です。

三相4線式と言われてもピンと来ないかもしれませんが、回路図を見れば分かります。これは、単相変圧器2台をV結線した巻線から三相3線を取り出し、V結線の一方の変圧器の中点を接地し、その接地を中点として単相3線を取り出すものです。したがって、V結線の片方の変圧器は純粋に三相3線負荷のみを受け持ち、もう一方は三相3線の負荷プラス単相3線式の負荷を受け持つことになります。したがって、同一容量ではなく異なった容量になるのが一般的です。

電験3種過去問解説 平成22年電力問6

このような問題でコンデンサの容量を求める公式もありますが、別に公式を暗記しなくても、皮相電力・有効電力・無効電力について理解していれば求まる問題です。ポイントは、負荷の有効電力は変化しないという点です。

まず、コンデンサ挿入前の皮相電力・有効電力・無効電力を求めます。有効電力はもちろん50kW。皮相電力は、50÷0.7≒71.4kV・A。無効電力は、71.4×√(1-0.7^2)≒51.0kvarです。

一方、力率が遅れ0.8のときの皮相電力・有効電力・無効電力を求めると、有効電力は50kW、皮相電力は50÷0.8=62.5kV・A。無効電力は、62.5×√(1-0.8^2)=37.5kvar。

したがって、51.0-37.5=13.5kvarがコンデンサが打ち消した無効電力となります。

電験3種過去問解説 平成25年電力問9

高校物理の力学の問題です。

「力」とは何かというと、運動方程式a=F/mから求まるように、力は物体を加速させる働きがあります。そして、その加速度の大きさは力の大きさに比例し、力が及ぶ物体の質量に反比例します。

これはちょうど、荷物を載せていない自転車と荷物を満載した自転車をこぐとき、荷物を載せていない方がすぐに加速する(=質量mが小さい)ことからも体感できます。また、同じ自転車であれば、力が強い人がこいだ方が(=力Fが大きい)鋭く加速することからも分かります。

ある物体に複数の力が働くときは、その力のベクトル和が正味の働く力になります。この典型例が綱引きで、綱の右側から引く力と左側から引く力が釣り合っていれば、綱は右にも左にも動きません。

さて、この問題について考えると、まず架線の張力Tだけが働いていて支線が無い場合、電柱は左側に加速度を持って倒れてしまいます。これを防ぐためには、架線の張力Tと同じ大きさ・真逆の向きに力を与えれば良いわけです。水平からの支線の角度をθとすると、支線が引っ張る力のcosθがTとなれば良いわけです。

この問題では、さらに追支線があるため、一見計算がすごく面倒な気がします。しかし、架線の張力Tと釣り合うように図の水平右方向の力を支線・追支線で受け持てば良く、その力は釣り合っている(=架線・支線・追支線・支持物・支線柱の全てに加速度が生じていない)訳ですから、求めるべきものは、水平からの追支線の角度をθ’としたとき、T2cosθ’の大きさがTとなれば良いわけです。従って、

  • T2=T/cosθ’

であり、cosθ’は「追支線の長さ分のl2の長さ」ですから、

  • T2=T/cosθ’=T×追支線の長さ/l2=T√(h2^2+l2^2)/l2

より、答えは(1)です。