(a)
この回路は、負荷側がY結線、負荷に並列に接続されるコンデンサがΔ結線であるところまではすぐ分かりますが、電源側がΔのうち2相しかないV結線となっています。
題意より、eaとebの間の位相が120°ということは、Δ結線から一相分抜けているecはeaに対して-240°となり、負荷から見ると三相Δ結線と同じに見えることが分かります。どうしてecが-240°になるかは、図で示します。
図中で定義されたecについて、ecのベクトルの始点から終点に向けて考えると、ec=-ea+(-eb)となります。ベクトルの引き算は、逆ベクトルの足し算ですから、図のように-ebと-eaを足したものは、eaから+120°(-240°)のベクトルとなり、ea・eb・ecは120°ずつの位相差の三相交流となることが求まります。
電源電圧は、Δ結線の線間電圧がEsin(ωt)の式、ω=2πfであることと照らし合わせると、電圧の最大値が100√6[V]、周波数fが50Hzであることが分かります。したがって、線間電圧の実効値は100√6を√2で割って100√3[V]です。
コンデンサを切り離した回路において、コイルのリアクタンスはjωLで求まります。電源周波数が50Hzなので、リアクタンス値はj×2×π×50×16×10^-3≒j5Ωとなります。したがって、一相当たりのインピーダンスは5Ωとj5Ωの二乗和で5√2Ωとなります。
Y結線負荷の相電圧は、線間電圧の√3分の1ですから、負荷の相電圧は100Vです。したがって負荷に流れる電流は100/5√2[A]=10√2[A]、この電流が5Ωの抵抗に流れるので、抵抗の消費電力は(10√2)^2×5=1000[W]です。これが3相分ですから、答えは3kWと求まります。
(b)
題意より、コンデンサを接続することで負荷の力率が1になるようにすれば良いことが分かります。「iaの波形はeaの波形に対して位相が30°遅れていた」ことがなぜ力率1になるかという説明は、こちらを参照ください。
まずY結線のCで考えます。5+j5Ωのインピーダンスに並列にコンデンサを接続し、虚数分をゼロにすればいいわけです。したがって、1/(5+j5)のアドミタンスとjωCのサセプタンスを足し、これの虚数をゼロにします。この条件からY結線のCが求まり、これをΔ型に変換すれば答えが求まります。計算は図にします。