SAT電験3種講座 理論 質問回答(トランジスタの接地方式による挙動の違い)

質問1 接地箇所がエミッタ接地と変わらないのになんでコレクタ接地になるんですか?

トランジスタ増幅回路の接地方式は、交流の目線に立って考えます。

直流目線で考えると、「B~E間はPN接合で、ここに電流を流すと数百倍の電流がC~E間に流れる」というトランジスタ本体の働きはどの接地回路でも変わることはありません。このとき、

  1. B~E間に掛かる直流電圧に入力の交流電圧を重ねて流し、それに比例して大きくなったコレクタ電流の途中に抵抗を入れ、電流変化をC~E間の電圧変化に変えて取り出しているのがエミッタ接地
  2. B~E間に掛かる直流電圧に入力の交流電圧を重ねて流し、それに比例して大きくなったコレクタ電流の途中に抵抗を入れ、電流変化をC~B間の電圧変化に変えて取り出しているのがベース接地
  3. B~E間に掛かる直流電圧に入力の交流電圧を重ねて流し、それに比例して大きくなったコレクタ電流とベース電流が合わさって流れだしたエミッタ電流の途中に抵抗を入れ、電流変化をその抵抗両端の電圧変化として取り出しているのがコレクタ接地

ということになります。一見、見た目の回路はどれでも同じように見えても、交流目線(=コンデンサは短絡して考える)に立つという点がポイントです。

質問2 出力を取り出す部分に接地が近くにありますが接地近くは0Vと考えてもう片方の出力端子との電位差で考えればいいのですか?

そういう事になります。なお、回路中のどこが接地なのかを判断するためには、

  • 入力端子と出力端子が直接接続されているライン

が基準として接地されている部分、と考えて頂ければ判断できるかと思います。

確かに、いわゆるA種接地~D種接地のように、強電の世界で物理的に地面に接続されている接地は具体的に良く分かりやすいのですが、トランジスタ回路において接地と言っても物理的にアースされている訳ではないので、この辺が理解しにくい原因の一つとなっているのでしょうね。

質問3 コレクタ接地の出力電圧がなぜ入力と同じにになるのか、講義だけでは分かりませんでしたし、講義もいまいち理解できませんでした。

質問4 講義の説明でもありましたが、出力で電流をたくさん取り出しても変わらないとありましたが、意味が分かりませんでした。

では、回路図で解説します。

最初は、直流バイアスなどを取り除いた原理回路図を示そうと思ったのですが、かえって省略されている前提が多くなり分かりにくくなってしまったので、実際に動作する回路を設計して示しました。

この回路は、電源が10Vでベースには10kΩ2本で分圧した電圧を与えているので、B電圧が5Vになります。B~E間は半導体のPN接合となっているので、トランジスタが動作していれば常にほぼ0.6Vを保ちますから、Eの電圧は4.4Vです。

Eと接地の間には100Ωの抵抗を入れているので、この抵抗に流れる電流は4.4mAです。トランジスタの電流増幅率を1000倍と仮定すると、B~Eに流れる電流は4.4μAです。

厳密に考えると、ベースに接続されている上側の10kΩにはこの電流も重なって流れるので、Bの電位は5Vにはならないのですが、B~Eに流れる電流が小さいのでほぼ無視できると考えて5Vということにします。

さて、このとき、入力の交流電圧が入ったとします。すると、ベース電圧は5Vを中心にして入力電圧の分だけ上下に変化します。

当然、入力電圧が上昇すればB~Eに流れる電流も増加しますが、その増加した電流の1000倍の電流がC~Eに流れ、この電流によって100Ωの両端には電圧増加が起こります。

入力の交流が±1Vの変化をしたとすると、トランジスタのBに掛かる電圧は5V±1V、つまり4~6Vの間で振れます。したがって、このとき、100Ωの両端に発生する電圧は3.4~5.4Vの間で振れることになり、これをコンデンサで直流成分を取り除いて出力すれば、出力電圧は±1Vとなり、入力の電圧変化がそのまま出力の電圧変化となって出てくることが分かります。

さて、ここでもし、出力端子から外部に電流を取り出したとします。例えば10mAの交流電流を出力として取り出したとします。

ここで、B~Eに流れる電流と、その電流を1000倍した電流が一緒に100Ωの抵抗に流れるという点がポイントで、エミッタから10mAを取り出したとしても、B~Eに流れる電流はその1/1001倍、つまり9.9μAに過ぎません。その1000倍の電流をトランジスタが作り出してくれるので、入力の交流信号源から流れ出す電流はそれよりずっと小さくて済むわけです。

以上がコレクタ接地回路の動作で、まとめると

  • 出力の交流電圧=入力の交流電圧と同じ
  • 出力から電流をたくさん取り出しても、入力から流れ込む電流はそれよりずっと小さくて済む

という性質を持つため、電圧は増幅しないけど電流を大きくするという目的で使われています。

トランジスタ増幅回路例の図を使った説明で、直流と交流で働きを別けて説明している部分で、説明を省きすぎてまったく理解できませんでした。

SATは原理をしっかり説明して根本を理解していくというコンセプトなのに電験にはでないからと「なぜ」というところをとばしてイメージで説明してましたが逆にこんがらがりました。

今までも、電験にあまり出ないところの説明は最小限に留めていました。そこはすんなり理解できたのに今回の説明は意味が分かりませんでした。

講義資料で見せましたエミッタ接地増幅回路の回路図例かと思います。では、これも、実際に動作する回路例を挙げて説明します。

まず、電源電圧20Vからベースに9kΩと1kΩで分圧されているため、上の例と同じくB~Eに流れる微小な電流を無視して考えれば、Bの電圧はほぼ2Vになります。

ここからB~E間の0.6Vを引いて、E電圧は1.4Vです。

E~接地間には1.4kΩを入れたので、ここに流れる電流は1mAです。トランジスタの電流増幅率を1000倍と仮定すると、B~Eに流れる電流は1μAなので、9kΩ~1kΩと通して流れる電流2mAに比べて十分小さく無視できることが分かります。

Eに流れる電流が1mA、B~Eに流れる電流が1μAということは、トランジスタのC~Eに流れる電流は0.999mAです。電源とコレクタ間には10kΩの負荷抵抗を入れたので、この両端に発生する電圧は9.999Vとなり、ほぼ10Vと近似してしまいます。

すると、トランジスタのC端子は10Vの電圧ということになります。

さて、ここで入力から±0.1Vの電圧が入力されたとします。+0.1Vのとき、B端子の電圧は2.1Vとなるので、この時のE端子の電圧は0.6を引いて1.5Vです。

E端子が1.5Vとなると、エミッタ抵抗の1.4kΩに流れる電流は約1.071mAに増加します。

この増加した電流のうち、1000/1001はC~Eに流れる電流ですから、C~Eに流れる電流はほぼ1.07mAです。

コレクタに挿入した10kΩにこの電流が流れると、電圧降下は約10.7Vとなり、トランジスタのコレクタ電位は電源電圧からこれを引いて約9.3Vとなります。

以上より、+0.1Vの入力でコレクタ端子の電圧が-0.7V変化することが分かり、増幅度は約-7倍となります。上記の原理から、入力が+のとき出力はー、入力がーで出力が+になることもご理解いただけるかと思います。

なお、この原理を踏まえれば、エミッタ接地回路の電圧増幅度はコレクタに挿入した抵抗10kΩによる影響が大きいことも分かるかと思います。

エミッタ接地回路で増幅度を高く取りたいときは、電源電圧を高くしてコレクタ抵抗を大きくすれば良いことになります。

SAT電験3種講座 電力 質問回答(電験3種 平成23年 電力 問11 過去問解説 マーレーループ装置の平衡条件)

電力 H23-11 の解答ですが、(エ)十分低いが、解答になりますが、どうして、十分低いが解になるのかいまいち理解できません。以上、宜しくお願い致します。

まず直感的に答えますと、もし故障点の地絡抵抗が100Ω、1000Ω、10000Ω…と高ければ高いほど異常度合いは小さく、正常稼働状態と変わらなくなっていきます。ケーブルの短絡故障を検出したいのですから、正常状態と大きくかけ離ればかけ離れるほど強く検出されることになり、そのためには地絡抵抗が低い方が大きな故障、つまり強力に検出されることになります。

理論的に考えます。マーレーループ装置に内蔵されている電源のアース側を見てください。

このアースは、被測定ケーブルに対してどこに接続されるかというと、図中「故障点」と書いてある部分のアースから外皮をたどり、×で示される故障点を経由してケーブルの心線に接続されます。ケーブルの心線は、

  1. ×点ー(左)-(マーレーループ装置のa点)ー電源の上側端子
  2. ×点ー(右)-(ケーブルA-接続線ーケーブルB)-(マーレーループ装置のa点)ー電源の上側端子

という2つの経路を通って電源に戻ります。このとき、

  • ×点ー(左)-(マーレーループ装置の下側端子)抵抗をR1
  • 0点-a点の抵抗をR2
  • ×点ー(右)-(ケーブルA-接続線ーケーブルB)-(マーレーループ装置の上側端子)の抵抗をR3
  • 1000点-a点の抵抗をR4

とすると、ブリッジの平衡条件から、

  • R1×R4=R2×R3

で平衡することになり、これから故障点が見つかります。

しかし、もし故障点の地絡抵抗が大きいと、この地絡抵抗がマーレーループ装置の電源と直列に入ってしまい、マーレーループ装置の平衡点がシャープに出なくなってしまいます。地絡抵抗が限りなく0Ωに近い完全短絡状態であれば、ブリッジ回路に流れる電流も大きくなるため、平衡点がシャープに出て故障点を探りやすくなります。

 

SAT電験3種講座 理論 質問回答(電流コイルを固定、電圧コイルを可動とする理由)

電験3種理論P94について。固定コイルが電流計で、可動コイルが電圧計の理由はなにでしょうか。

これは電流力計形計器の件だと思いますが、これは固定コイルと可動コイルの間で生じる力を利用して電力を求める仕組みとなっています。

このとき、電流コイルは大電流が流れるので太い巻線で少ない巻き数、電圧コイルは小電流なので細い巻線で比較的多い巻き数で巻きます。

電流コイルを可動にしてしまうと、可動部分を接続する点に大電流が流れてしまい、接触抵抗による発熱が増え具合が悪くなります。

一方、電圧コイルに流れる電流は小さいため、可動部分を作ってもそこに掛かる電流的ストレスは小さくて済みます。

直流電動機のブラシのように、可動部分に大電流を流すというのは大変な仕事ということです。

SAT電験3種講座 法規 質問回答(電技解釈143条 電気機械器具を住宅の屋内配線と直接接続しなければいけない例)

 電気設備技術基準の解釈第143条第1項によりますと、2kw以上の電気機械器具は住宅の屋内配線と直接接続しなければいけないとあります。

一般住宅において200V使用のエアコンなどは確かに専用の配線、開閉器や過電流遮断機に接続されてはいます。ですが、器具直結ではなく200Vコンセントを使用するようになっていることがほとんどではないかと思いました。これは本来直結でなくてはいけないが、許容電流が十分な専用配線であれば実務的にはコンセントでつないでいるということなのでしょうか?家庭用200Vエアコンはエルバー、タンデムなどコンセント接続を前提として販売されているように思います。

おっしゃる通り、電技解釈143条には、住宅の屋内電路についての規定があります。

しかし、条文を頭から良く見ると、

  • 「住宅の屋内電路(電気機械器具内の電路を除く。以下この項において同じ。)の対地電圧は、150V以下であること。ただし、次の各号のいずれかに該当する場合は、この限りでない。」

とあり、その「次の各号のいずれか」のうちのひとつとして、

  • 「定格消費電力が2kW以上の電気機械器具及びこれに電気を供給する屋内配線を次により施設する場合」

の例として

  • 「電気機械器具は、屋内配線と直接接続して施設すること。」

と記されています。

つまり、屋内電路の対地電圧が150V以下であれば、定格消費電力が2kWに関係なくコンセントを使用して構わないということになります。

200Vの器具を直結で使用しなければいけないのは、対地電圧が150Vを超える場合、つまり三相200Vを家庭内に引き込み、その電気を使って強力な電磁調理器や強力なエアコンを使用するという例になります。そんな例があるのか?と思われそうですが、私の知るかぎり、在日米軍関係者が、アメリカから強力な電磁調理器を取り寄せて設置して使いたいという強い希望があり設置するという例を聞いたことがあります。

SAT電験3種講座 理論 質問回答(電験3種 平成27年 理論 問12 電界中で力を受ける電子の軌跡)

平成27年度理論の問12についての質問です。速度成分uを求めた後の、距離Xの求めかたが、動画からは分かりませんでした。式を省略せずに教えて頂けると助かります。宜しくお願い致します。

では、最初から順番に見ていきます。

まず、速度vで飛び出した電子が、偏向板の距離lの間を通過するのにかかる時間は

  • l/v

です。偏向板で電子が受ける力の大きさF(±を考えない絶対値)は

  • F=eE

で、運動方程式

  • a=F/m

より、質量mの電子がこのときに受ける加速度は

  • a=eE/m

です。

加速度aを受けて等価速度直線運動をする物体の速度vは、初速度をv0として

  • v=v0+at

ですから、ここに加速度a=eE/mを代入すると、電子のx方向の初速度はゼロであることを踏まえて

  • V=(eE/m)・(l/v)=elE/mv

となり、uの選択肢から正解は(1)か(5)に絞られます。

さて、この偏光板を出た直後の電子は、

  1. z方向にvの等速度
  2. x方向にelE/mvの等速度

を持っていることになりますから、

「z方向にvだけ進んだとき、x方向にはelE/mvだけ進む」

ことになります。したがって、

「z方向にdだけ進んだとき、x方向には(elE/mv)・(d/v)だけ進む」

ことになり、答えは(5)と求まります。

SAT電験3種講座 理論 質問回答(電験3種 平成24年 理論 問7 RLC直列回路の挙動と直列共振)

H24-7 理論 の解説についてです。

掲題の解答ですが、インピーダンスが小さくなれば、抵抗Rのみ残り、電流は小さくなるとおもうのですがどうして大きくなるのでしょうか?

この直列共振回路は、暗黙の前提として、

電圧源からーR-L-C-電圧源に戻る

という回路になっているわけです。したがって、LとCの直列リアクタンスがちょうど打ち消しあってゼロになってしまえば、RLC直列部分に残るのは抵抗成分Rだけとなり、電流が最大になります。

もしこれより周波数が低ければ(極端な場合、電源がゼロHz、つまり直流電源であれば)、Lのリアクタンスは小さくなるものCのリアクタンスが大きくなり、回路全体としてのΩ値は大きくなるため、直列共振状態よりも回路電流は小さくなります。周波数が高ければ、今度はLのリアクタンスが大きくなり、やはり電流は小さくなっていきます。

SAT電験3種講座 理論 質問回答(コイルが作り出す磁界と電磁誘導)

理論のテキストp116の図について質問です。

インダクタンスL1に流した電流I1によって、環状鉄心に時計周りの磁界が発生するかと思います。しかしインダクタンスL2では、最初の段階では、過度現象によって磁界の変化を妨げる向き(反時計回り)に磁界を発生させると思います。つまり最初の段階では電流I2の赤い矢印の向きは右向きになると思います。その後、発生し続ける時計回りの磁界にだんだんと根負けして、インダクタンスL2では赤い矢印どうりの電流I2が流れるかと思います。以上が図を見たときに私が考えたことなのですが、どこか誤りはございますでしょうか。あれば、何が間違っているのか教えて下さい。

まず、電流の向きの定義ですが、電気の世界においては、実際にその向きに流れる電流を正として定義するとは限らない場合があります。

例えば4端子回路網の場合、入力・出力ともに、回路の中に流れ込む電流の向きを正と定義したうえで、出力端子にはマイナスの向きの電流が流れる、として計算していくことがあります。

したがって、(感覚的には妙な感じがしますが)実際に流れる電流や発生する電圧の正負とは関係なく定義してある場合もある、とご承知おきください。

さて、それを踏まえてこの図を見ます。

電線に流れる電流が作る磁界は右ねじの法則がありますから、この図でI1の正の向きに電流が流れるとすると、おっしゃる通り鉄心には時計向きの磁界が流れます。

コイルL2に流れる電流は、鉄心に流れる磁界が増加していくときはそれを減少させるように流れ、磁界が減少していくときはそれを増加させるように流れます。

したがって、

「L1の電流が増加していく間は、I2は図の矢印と逆側に流れ、L1の電流が減少していく間は、I2は図の矢印の向きに流れる」

が正解ということになります。

そして、これに関連した疑問なのですが、理論テキストp112下図についてです。磁界の向きはN極からS極へ矢印が向くと思うのですが、電磁誘導を考えるときは、磁界の向きよりも磁界の動きの向きを考えることが正しいということでしょうか?

その通りです。上にも書きましたように、コイルに流れる電流は、そのコイルを通過して流れる磁界の増加や現象を打ち消すように流れます。

そして、これが正しいとすればp116の図において、電流によってコイルから発生する磁界は動いている磁界、逆に永久磁石に発生している磁界は動きが無い磁界ということになるのでしょうか?(実際には動いている磁界、動きが無い磁界、という言葉はないかもしれませんが…

はい、とても鋭い着眼点です。その通りです。もちろん、コイルに流れる電流を一定に保てば「動きがない磁界」になります。

要するに、磁界の強さの変化がない、ということですね。

(なので、永久磁石の場合は、永久磁石自体を物理的に動かしたり回転させることで「動きのある磁界」を作るわけです)

もし、永久磁石から発生している磁界とコイルから発生している磁界が同じものであれば、コイルの両端に永久磁石のN極、S極を置けば永久にコイルには電流が流れてしまいかねないのでは、と思いまして…

永久磁石もコイルも磁界そのものは同じですが、ここまで書いたように、その磁界の変化が電流を生み出すわけです。

なお、何故交流の波形が正弦波かというと、これは磁石を回転させることで磁界の変化を作り、それを元にしてコイルで電流を作っているからです。

SAT電験3種講座 質問回答(勉強方法)

数学理論と学習し、問題に取り組んでいますが、なかなか自分の力で答えまでたどり着けません。わかるまで何度もやればいいのかもしれませんが、なにか方法はありますか。教えてください。よろしくお願いします。

電験3種の勉強法ですが、王道は、単なる問題と答えの暗記ではなく、問題から答えに至るまでの理屈を正しく理解して解いていくことになります。もちろん、勉強にあたっての前提知識やその人にとって向いた勉強方法など様々ですから、一口でこうすれば良い、という勉強法はありません。

とはいえ、これでは余り答えになっていませんから、最も実践的な勉強方法をお答えしておこうと思います。

それはまず、直近からの試験過去問に取り掛かることです。もちろん最初は解き方なんて全然分からないとしても、どういう理屈でどのようにすれば解けるのかを、参考書や資料、ネットなどを動員して調べ、答えに至るまでを追う方法です。ハードかもしれませんが、正解に至るまでの筋道を一問ずつ理解していけば、実戦的な知識が身に着いていくかと思います。

電気の理論は難しそうですが、極めて身近にあふれているものですし、日頃使っていて慣れ親しんでいるはずのものです。私の講座でも、極力そういう身近な例を出し、具体例を見ることで直感的に分かりやすいように努めているつもりです…。

また、4科目のうち電力と法規は知識問題の多い科目です。まずはこの2科目の科目合格を確実に狙い、理論と機械は長期計画という手もあります。

どうしても直接分からないところを講師に質問したいという事であれば、メールでの質問も良いのですが、公立の職業訓練校等が開催している電験3種講座などを受講する手もあります。

私は東京都の職業訓練校で講座を持っているので東京都しか分かりませんが、

http://www.hataraku.metro.tokyo.jp/school/carr_up/index.html

このページに各校で開催されているキャリアアップ講習のガイドがあります。

私は今のところ、来年1月8・14・21日に府中校で開催される「第三種電気主任技術者入門」と、7月2・9・16日に府中校で開催される「第三種電気主任技術者科目合格対策(法規)」の講師を担当します。

あまりお役に立てるような回答ではなく申し訳ありませんが、今後ともよろしくお願いいたします。

SAT電験3種講座 機械 質問回答(他励式直流電動機の性質)

電験3種電気主任技術者テキスト機械編のP7の項目でテキスト上から3行目「界磁電流は、電機子とは無関係~(省略)~逆起電力が大きくなるため回転数は低下する」と書いてあり、ここの部分は、電機子が強い磁界を通過すると、逆起電力も大きくなって回転数は低下するのかなと思ったのですが、DVDでは(DISK1 34:27)では、励磁増加すると回転数は低下すると書いてあり、励磁は増加するとコイルの磁界が強くなり回転数は増加するイメージがあるのですが、フレミングの左手と右手の法則は同時に存在するので、コイルの磁界が増加した分だけその時に通過する力も大きくなり、逆起電力が上昇して回転数が下がると考えたら いいのでしょうか?

基本的には、その考え方で間違いはありません。

電動機の出力は、電機子の逆起電圧×電機子電流(電圧×電流なので単位はワット)で求められます。さらに、この逆起電圧は、電機子に外部から与えられた界磁磁束の強度×回転数で求められます。(フレミングの右手の法則とファラデーの電磁誘導の法則)

ここで、他励電動機において励磁を増加させると、回転数がそのままであれば逆起電力が増加してしまうため、回転数を下げて逆起電力を下げるように働き、その結果回転数が低下するわけです。

とはいえ、電動機の回転数を決定するのは、現実的にはそれ以外の要素もあります。例えば、機械的負荷が、回転数に関わらず一定トルクなのか、それとも回転数に比例してトルクが必要なのか、あるいはその逆なのかによって電動機の回転特性は大きく異なってきます。

しかし、そこまで考えると複雑になりすぎてしまうため、電験3種の試験では、特殊な状況は考えず、基本的な原理を押さえておけば大丈夫、ということになろうかと思います。

励磁は増加するとコイルの磁界が強くなり回転数は増加するイメージがあるのですが、

はい、確かに電動機の励磁が強くなると回転力が強くなるから回転数も上昇するイメージがあるのは分かります。

フレミングの左手と右手の法則は同時に存在するので、コイルの磁界が増加した分だけその時に通過する力も大きくなり、逆起電力が上昇して回転数が下がると考えたら いいのでしょうか?

ここは、電源電圧が一定であるというのがポイントです。

電機子巻線に流れる電流は、電源電圧から電機子の逆起電圧を引いた差の電圧を、回路の巻線抵抗で割った値になります。

従って、何をどうやっても逆起電圧は電源電圧以上にはなりえません。(電動機を発電機として使用する場合は別です)

従って、界磁を強くして逆起電圧を大きくすると、必ず回転数は下がり、電源電圧以下の逆起電圧になるように動くわけです。

kemaの雑記置き場