「SAT」カテゴリーアーカイブ

SAT電験3種講座 理論 質問回答(電験3種 平成28年 理論 問5 重ね合わせの原理を適用した回路)

H28理論過去問の問5についてですが、重ね合わせの原理を用いた回答をお教え下さい。よろしくお願い致します。

重ね合わせの原理は、「回路中の複数の電源について、1つを残して他の電圧源は短絡、電流源は解放して各部の電圧・電流を求め、それを電源の個数分だけ繰り返して重ね合わせる」という理論です。

従って、9Vの電池のうち3個を短絡して1個を残した回路が重ね合わせの原理を使った回路になります。

この回路は、9Vの電池から見ると、0.1Ωと、その次に(3個の0.1Ωと0.5Ω、合計4個の抵抗の並列)が入った回路になります。回路全体の抵抗値は0.13125Ωで9Vの電池から流れる電流は68.6Aとなりますから、0.5Ωに流れる電流は4.3Aとなり、電池が4個あるのでこれを4回重ね合わせて0.5Ωに流れる電流を求めると17.1Aです。これより電力を求めると、確かに147Wとなり、正解と一致します。

SAT電験3種講座 理論 質問回答(電験3種 平成27年 理論 問17 インピーダンスの計算)

過去問124ページ 理論 問17 の(a)問題で、【負荷抵抗=5+j5】が、5√2になるまでの計算過程がいまいち分からないので、教えて下さい。

私は過去問の冊子を持っていないため間違っていたら申し訳ないのですが、内容からして平成27年の問17かと思います。

RL直列回路のインピーダンスは、(RL直列素子に掛かる電圧)÷(RL直列素子に流れる電流)で求められます。

ここで、直列ですから電流はいかなる場合でも同じですので、ある電流が流れた場合のRL直列の電圧に注目することになります。

すると、5Ωの抵抗は電流を全く同じ位相でその電流の5倍の電圧を発生させることになります(オームの法則より、V=RIなので)。

コイルは、電流に対して電圧が90°進んで発生し、リアクタンスが5Ωですから、電流の5倍の電圧を発生させることになります。

従って、互いに位相差が90°である電圧を合成することになるので、三平方の定理からV^2=5^2+5^2で求められることになり、

√50=√(5×5×2)=5√2

が求まることになります。

SAT電験3種講座 理論 質問回答(オペアンプを用いた反転増幅回路の動作)

電験 理論44 テキスト134ページ オペアンプの講義についての質問です。添付写真で抵抗R1の電圧は3Vとのことですが、どうしてそうなるのか理解できません。ご教示願います。

オペアンプの動作は、

  • +入力端子の電圧>-入力端子の電圧の場合…出力電圧は上昇する
  • +入力端子の電圧<-入力端子の電圧の場合…出力電圧は下降する
  • +入力端子の電圧=-入力端子の電圧の場合…出力電圧の変動は止まる

であることはご理解いただいていると思いますので、それを念頭に置きます。

まず、この回路で、入力端子の電圧=-入力端子の電圧=+入力端子の電圧=出力端子の電圧=0Vという初期状態であるとします。これは上記のオペアンプの動作条件を満たしていますから、この状態で安定しています。

ここで、入力端子に3Vを与えたとします。すると、入力から電流がR1→R2→出力端子という順に流れていきます。

このとき、-入力端子の電圧は当然0Vよりも上昇しますから、出力端子の電圧は下降を始めます。では、どの段階で出力端子の電圧変動が止まるかというと、オペアンプの-入力端子の電圧が0Vになった時点で止まることになります。

このように、オペアンプの+入力端子が接地されて0Vとなっている以上、入力Eiにどんな電圧が与えられようとも、オペアンプの-入力端子が常に0Vを維持するようにオペアンプは動作することになりますから、結果的にR1の両端には常に入力電圧Eiが掛かることになります。(というか、そうなるように構成した回路が反転増幅回路といわれているわけです)

猫電テキストp34ベクトル図の誤り

猫電テキストp34について質問です。

DVDの説明のテキストと頂いたテキストの図が異なっています。正誤表がありますが、正誤表の記述も曖昧で、DVDが間違っているのか、頂いたテキストが間違っているのか分かりずらいです。DVDの説明でコイルの式、jV/I であるから、+Jになるからコイルとコンデンサがひっくり返っているという説明がよくわかりません。一番混乱しやすいところで、テキストが間違っているし、説明は曖昧だし、詳細な説明をよろしくお願いいたします。

34ページの図につきましては、御指摘の通り、テキストの方が誤っています。上下ひっくり返した図が正しいものとなります。

改めてこの辺りを整理しますと、次のようになります。

 

  • コイル…両端に与えられた電圧の波形に対して、電流が90°遅れて流れる。ベクトル図で、虚数のjは時間的に90°進んでいることを表す記号なので、電流は-jと表される。(コイル両端の電圧)÷(コイルに流れる電流)を求めると、分母が-jであるため、求められたリアクタンスは+jが付くことになる。つまり、インピーダンスを表すベクトル図では、+90°方向となる。

 

  • コンデンサ…流れ込んだ電流の波形に対して、両端の電圧の波形が90°遅れて発生する。つまり、両端の電圧の波形に対して、電流の波形は90°進むことになる。したがって、ベクトル図では、電流が+jと表される。

(コンデンサ両端の電圧)÷(コンデンサに流れる電流)を求めると、分母が+jであるため、求められたリアクタンスは-jが付くことになる。つまり、インピーダンスを表すベクトル図では、-90°方向となる。

 

以上のことより、P.34の図は上下が反対になっていることが分かります。

ご迷惑をお掛けしており申し訳ありません。

SAT電験3種講座 機械 質問回答(電験3種 平成27年 機械 問14 過去問解説 真理値表から論理式を求める問題の解き方)

機械 平成二十七年の 問14なのですが講座では 選択肢の法から照らし合わせよ との説明をうけ そのとおりやっていますが 何回かやりましたがそれでも膨大な時間がかかります たとえ全く同じ問題がでたとしても ありえないのはわかっておりますが  他の問題をといてこの問題もやっていく というのは私には 無理です もう一歩踏み込んだ こういう問題を解くコツというか方法はないでしょうか

では、この問題について目の付け方を出来るだけ詳しく書きたいと思います。

まず、回答選択肢を吟味すると、どれも初項はAとBの積です。次の項はAとCもしくはAとDの積、そして三項目はそれぞれの選択肢毎に別々となっています。また、どれも回答選択肢は加法標準形(一項目+二項目+三項目…という足し算の形)になっています。

加法標準形の式を吟味する場合、

  • 一項目・二項目・三項目のどれかが1であれば式全体が1
  • 一項目・二項目・三項目の全てが0であれば式全体が0

という条件を上手に使って回答を導き出すのがセオリーです。

ここで、「一項目・二項目・三項目のどれかが1であれば式全体が1」の条件を使います。選択肢の三項目に注目します。

(1)(4)はB・C・Dなので、B=C=D=1のとき式全体は1です。これは真理値表の上から8番目を満たさないので脱落です。

(2)(3)はA・B・Cなので、A=B=C=1のとき式全体は1です。これは真理値表を満たします。

(5)はA・B・Dなので、A=B=D=1のとき式全体は1です。これは真理値表を満たさないので脱落です。

次に、二項目に注目します。

(2)(3)は¬A・¬Dですから、A=D=0のとき式全体は1です。これは真理値表を満たします。

その次は、一項目に注目します。

(3)は¬A・¬Bですから、A=B=0のとき式全体は1です。これは真理値表を満たします。

(2)は¬A・Bですから、A=0、B=1のとき式全体は1です。これは真理値表の上から6番目と8番目を満たさないので脱落です。

 

上記は加法標準形の場合ですが、例えば(A+B)・(A+C)・(D+E+F)のように各項の積の形で表現される乗法標準形もあります。

乗法標準形の場合は、どの項(カッコで囲まれている式)も全て1の場合に式全体が1となる、という点に注目して、どの条件の場合に式全体が1となるか、という場合分けをして追い込んでいくことになります。

参考になりましたでしょうか。

SAT電験3種講座 機械 質問回答(誘導電動機の性質と力率・効率)

カゴ型誘導電動機についてご質問があります。

始動時の力率は悪いものの、定格運転時の損失が小さく高効率と記載してありますが、これは定格運転時は力率がいいという意味でよろしいでしょうか?その意味で合ってれば、定格運転時も二次抵抗は低いままなので力率は悪いままのように思えます。なぜ力率が良くなるのでしょうか?定格運転時の損失が小さく、高効率は力率のことを言ってないということでしたら、力率はやはり悪いままなのでしょうか?

お書き頂いた通り、かご型誘導電動機は始動時は大変力率が悪いですが、定格運転時は力率が良くなります。

但し、同期電動機のように力率=1.0にはなりませんから、通常、並列にコンデンサを入れて力率補償しながら運転します。

二次抵抗との関係ですが、これは二次抵抗の値自体はさほど変化しなくても、回転上昇によって一次側と二次側の結合が変化していくことを考慮することでイメージが付くかと思います。

始動時は滑りが1ですから、二次側(回転コイル)に発生する電圧は電源周波数と同じになり、コイルに誘起される電圧は、ファラデーの電磁誘導則によりコイルを貫く磁束の時間変化、すなわち周波数に比例することから、二次側には高い電圧が発生することになり、ここに低抵抗が負荷抵抗として挿入されていることから効率が悪くなります。(高電圧・小電流の回路に小抵抗を入れても消費電力は小さい。無駄に流れる電流は無効電流となって電源側に現れ、力率は悪くなる)

回転が上がってくると、例えば滑りが0.1であれば二次側の周波数は電源の1/10になります。こちらも電磁誘導則から、二次側に発生する電圧は小さくなる分、大電流が流れることになります。低電圧・大電流の回路に負荷抵抗を挿入することになるので、回転開始時に比べると大きなエネルギーを消費できることになり、高効率で運転できるようになります。

以上のようなイメージを持っていただければ、動作がイメージできるのではないでしょうか。

なお、低効率というと、力率が悪くて流れる電流が多いわりに取り出せる力が小さい場合と、抵抗分などで熱になる無駄な電力が多くて取り出せる力が小さい場合の両方を指すことができますが、誘導電動機では後者のような熱損失要因はほとんど無いため、前者の意味で言葉を使っているとお考えいただいて結構です。

SAT電験3種講座 法規 質問回答(電験3種 平成26年 法規 問10 過電流遮断機の定格電流と電線の許容電流)

過電流遮断器の定格電流は3倍、電線の許容電流は1.25倍か1.1倍です。ということは遮断器の方が定格電流が高いです。でも図では電線の許容電流が一番高くなっているのはなぜですか?電線の方が定格電流が高くないとおかしい気がします。電線の定格電流になる前に遮断器が作動しないと電線が溶けてしまいそうです。

これについては「法的にそう規定されているから」ではあるのですが、もうちょっと深く突っ込んでお答えします。

確かに、理論的には、可能性として考えられる最大の電流に耐える電線を用意しないと、過電流によって電線は危険な状態になってしまいます。しかし、機械などの科目でも出てきた通り、特に誘導電動機などは起動初期の短い時間に非常に大きな電流が流れ、その後落ち着くという特性を持っています。もしそれに耐えるだけの電線を用意するとなると、極めて大容量の電線を用意しなくてはいけません。

一方、電線の許容電流は、ジュール熱による発熱によって規定されます。したがって、短時間であれば、電線の許容電流を超えて電流を流しても現実問題として特に問題は発生しないという事実があります。

以上のことより、電動機の特性、遮断機の遮断特性、電線の発熱量などを総合的に考慮し、短時間であれば電線の許容電流を超えても問題は発生しないという事情と太い電線は非常に値段が高くなるという事情を加え、このように規定されているわけです。

法律が「電線の過電流」にお墨付きを与えるというのも変な感じがしますが、電線の熱容量(発熱した場合の温度上昇のしにくさ)なども鑑みた上でこのように規定されていますから、現実的に何ら問題は無いわけです。

SAT電験3種講座 機械 質問回答(電験3種 平成27年 機械 問17 過去問解説 ブロック線図の伝達関数)

機械の問17 (b)問題で、「10倍大きくなるにつれ-20dB変化する」とあるので、(1)、(2)の2択にしぼれますが、なぜ(1)が答えになるのか分からないので、教えて下さい

まず(a)について、1/jωTの出力を1とすると、出力C(jω)はK=10より10になります。

また、逆算すると1/jωTの入力がjωTですから、R(jω)は1+jωTと求まります。

ここでT=0.2なので、これを代入するとR(jω)=1+j0.2ωとなり、答えは(1)が求まります。

これを踏まえて考えます。このブロック線図は低い周波数を通し高い周波数を遮断するLPFですが、フィルタの遮断周波数は出力が入力の半分となる点として定義されますから、周波数伝達関数10/(1+j0.2ω)においてω=0の場合に比べて出力電力が半分となるωを求めることになります。これは式より、ω=5において10/(1+j0.2ω)= 10/(1+j1)になることが分かりますから、変曲点のω=5である(1)が正解となります。

SAT電験3種講座 理論 質問回答(電験3種 平成27年 理論 問3 磁性体材料の磁化特性と透磁率)

空欄イの箇所ですが、B/Hの最大値を見るとグラフではHが1〜2のあたりが一番大きくなると思うのですが、なぜ0〜2で考えるのでしょうか。

透磁率B/Hは、「外部から、Hの磁界を与えたときに、磁性体の内部にはBの磁束密度が生じるとき、Hに対するBの割合」を意味しています。したがって、H=0の原点からあるHまでの値を使って求めます。

確かにB/Hの曲線自体の傾きは、H=1.5~2程度の部分が最も傾きが大きいことになりますが、もし仮にこの部分を使って透磁率を定義した材料があったとすると、その透磁率を発揮できるのはH=1.5~2.0の間だけという事になってしまい、これでは磁性材料の特性を示す指標として余り意味がなくなってしまいます。

SAT電験3種講座 電力 質問回答(電験3種 平成27年 電力 問14 過去問解説 磁性体材料の特性と利用方法)

正解より、鉄心材料は、保持力が大きく、飽和磁束密度が小さくヒステリシス損が小さい材料が選ばれる、とのことです。この理由(関連付け)がわかりません。また、磁性材料は下記2種類に大別されますが、それぞれ、なぜそのものを選ぶのかも、よくわかりません。併せて、教えてください。

(1)磁心材料

透磁率、抵抗率、飽和磁束密度→大きいものを選ぶ

保持力、残留磁気→小さいほうが有利

(2)磁石材料

保持力、残留磁気→大きいものを選ぶ

鉄心は、変圧器において、巻線で作り出した磁束を効率よく低損失で通過させる必要があります。そして、変圧器は50Hzや60Hzの交流で使用されますから、鉄心の中も一秒に50回や60回、磁束の向きが変化します。したがって、磁束を効率よく低損失で通過させる=透磁率が高い必要があります。

また、出来るだけ大量の磁束を通すことが出来る方が好ましいですから、飽和磁束密度が大きいものが有利です。

鉄心の中を磁束が変化して流れると、それによって鉄心には渦電流が発生しますが、鉄心の電気抵抗が小さいと、この渦電流が大きくなり損失が増えますから、抵抗率は大きい方が有利です。

 

磁石材料は、永久磁石を思い浮かべて頂ければ結構です。

磁性体材料は、鉄心なども同じですが、金属の内部には極めて微小な磁石が大量に存在しています。これを外部からの磁界によって一方向に揃えると、その材料は永久磁石になります。このとき、外部からの磁界で揃えられた微小磁石について、その方向の保ちやすさの指標が保持力です。つまり、保持力が大きい材料は、時間が経ってからも強い磁力を保つことができます。

残留磁気は、上記のように外部からの磁界によって与えられた磁気が、外部磁界を取り去った後にどのくらい残留するかという値ですから、これも大きいほうが永久磁石の材料として好都合です。

問題の正解は(2)ですが、この問題は「誤っているものを選べ」という問題ですから、記述中の「飽和磁束密度が小さく」が誤りで、「保持力が小さく、飽和磁束密度が大きく」とあれば正しい記述になります。