「SAT」カテゴリーアーカイブ

SAT電験3種講座 理論 質問回答(FETの働きとP型半導体・N型半導体の性質)

電験三種 理論編のP131の1~2行目にG-S間にG側がプラスの電圧をかけます。すると、チャネル部分にはP型半導体の中に散在している自由電子が引き寄せられ・・・とありますが、P型半導体は、自由電子が不足している性質なので、誤りではないでしょうか?
正しくは、
すると、チャネル部分にはN型半導体の中に散在している自由電子が引き寄せられ・・・ではないですか?確認をお願いします。

御質問承りました。

結論を先に言いますと、間違いではありません。以下、理由を説明いたします。

N型半導体は、電子が過剰となり余り気味で、P型半導体は電子が不足気味になっています。ところが、これはN型半導体=電子しか存在しない、P型半導体=ホールしか存在しないという意味ではありません。

半導体のイメージは、学校のプールに大量のビニール製ボールが浮いているようなものです。ボール1個1個が電子です。このとき、ボールが水面を完璧にぴったりと1個分の隙間もない状態にしたのが真性半導体、ボール1個や2個の隙間が空いているのがP型半導体、全面を埋め尽くしたボールの上に1~2個が余って乗っかっているのがN型半導体です。

テキストの例ではP型半導体ですから、プールの隅に1~2個分の隙間が空いている状態です。このとき、風を起こしてボールを隅に押しやれば、その力で押しやられたボールが1~2個余った感じになり、他のボールの上に乗っかってしまうことが考えられます。このとき、風上側ではボールが抜けた穴が広がっているのですが、押しやられた隅っこだけを見ると、あたかも電子が余って上に乗っかっているN型半導体のように見えます。これが、「チャネル部分に集合した自由電子により、チャネルの下部分がN型半導体化」する理由です。

半導体の性質のなかで、「多数キャリア」「少数キャリア」という言葉があります。N型半導体では電子が多数キャリアでホールが少数キャリアですが、これは上記のプールの例で示したように、N型半導体といえども全体の電子の偏りにより、一部で電子が不足したホールが出来ることがあってそれが電子を運ぶ役割をすることがあることを示しています。もちろん、全体で見れば圧倒的に余剰電子が電流を運ぶ場合が多いため、それらを多数キャリアと呼ぶわけです。P型半導体ではその逆で、ホールが多数キャリアですが、電子の偏りによって一部が電子余剰になることがあり、それが電流を運ぶ役割をする場合に少数キャリアといいます。

あと、理論の講座を一通り学習し終わったら、理論の過去問講座に進むのがいいのでしょうか?それとも機械の講座に進むのがいいのでしょうか?

勉強の進め方の適性は人によって異なるので、絶対にこうするのが正しい!とも言えないのですが、理論の過去問練習に進むのが無難かと思います。機械にしても電力にしても、そして法規の計算問題にしても、まずは理論を正しく理解していなければなりませんので。

あと、過去問の解き方ですが、いきなり動画で解説を見る前に自分で解くほうがいいでしょうか、手も足もでないと時間の無駄になりそうで、解説を覚えるのでも通用するならそうするつもりです

私がかつて大学受験の勉強をしたときは、出題の問題を見ても直ぐに分からない場合、さっさと答えを見てしまい、その答えをなぞって自分で計算することによって覚えました。人によって適不適はあるかと思いますが、個人的にはそれで全然かまわないと思います。

SAT電験3種講座 電力 質問回答(三相3線式回路の電線の接続方法)

三相三線式の3本の送電線、あるいは配電線の端末はどのような形で接続されていますでしょうか?単相の場合はテキストでもわかりやすくイメージできるのですが、3線の端末処理の形がイメージできません。

私のイメージでは変電所の変圧器の鉄心に巻かれるときは、そこで3本が交わっている。それ以外では、例えば配電線の末端で柱上トランスが接続している場合、3線のうちの2本をトランスに接続して単相を取り出すと思いますが、残りの1本を含め電柱の上でどのような形で3線の端末が結線されているのかが分かりません。

変電所に行かない一番下にある終末の鉄塔の送電線の端末も同じくです。端末で3線とも碍子に繋がれているという情報もありましたが、これでは回路にならないのではないでしょうか?
よろしくお願いします。

単相交流では、2本の線で電気を送り、片方の線が右側に電流を流していれば、もう一方の線は必ず同じだけ左側に電流を流している。これはとても分かりやすいです。

三相交流の場合は、3本の線で、お互いタイミングがずれて(数学的には120°ずつ)電流を流しています。これはちょうど、3本のパイプが真ん中でY字状に結合されていて、その3本のパイプに水が流れている状況と似ています。どれか2本が水を送っていれば、残りの1本は必ずそれを同じ量の水を排出しますし、2本が水を排出している場合、残りの1本のパイプはそれを同じだけの量の水を送り込んでいなければ辻褄が合いません。

実際の変圧器の結線については、私が手書きで図を描くよりも綺麗な図がありますのでアドレスをお知らせします。

3線のうちの2本をトランスに接続して単相を取り出すと思いますが

小容量の変圧器は、基本的にはそのような回路になっていることもありますが、実際は色々な変圧器が作られています。これも外部リンクで申し訳ありませんが、

この辺りを参考にされればよろしいかと思います。このうち、スコットトランスは面白い原理で動作するものです。電験3種の試験でも極めて稀ではありますが出題されたことがないわけではありません。(注:2017年2月27日現在、上記昭和電機製作所の「スコット結線変圧器」の下にある巻線図は、左右逆に誤っています)

SAT電験3種講座 機械 質問回答(電験3種 平成22年 機械 問2 電動機の電気的損失と機械的損失)

50÷0.94=53.19で機械入力を求めているのですが、どうして定格出力÷効率=機械入力になるのですか?53.19-50-1.89-0.2=1.10で固定損を求めていますがこの式の意味が分かりません。宜しくお願い致します。

発電機や電動機は、電気エネルギと機械エネルギを相互に変換する装置です。機械的なエネルギを入力して電気エネルギを取り出すのが発電機という事になります。

機械にしても電気にしても、機械抵抗や電気抵抗、その他の要因があるため、入力したエネルギが100%変換されるという事はなく、必ず何らかの損失成分が発生します。この損失成分は、抵抗によるジュール熱、空気中を回転することによる風切り損失、ベアリングなどの機械的接触による損失、磁束の一部が漏れ出すことによる損失…細かく言えば、かなり色々な損失要因が挙げられるわけです。

さて、この問題では、定格出力・定格電圧が規定されていますから、その定格出力を得るために入力された機械的エネルギと定格出力との差が損失成分になる、という観点から求めていきます。発電機の効率が94%と分かっていますから、

  • 50kW÷0.94=53.19kW

が、定格出力を得るために発電機に入力される全機械的エネルギになります。つまり、3.19kW分が、電気的・機械的損失の総和です。

この3.19kWから、界磁回路の抵抗による損失を引くと、界磁回路は200Ω、そこに掛かる電圧が200Vであることから、

  • P=V^2/R

より0.2kWを引いて2.99kWが残ります。

次に電気子回路の抵抗による損失を引くと、

  • 電気子が供給する電流が251A
  • 抵抗が0.03Ω

より

  • P=I^2R

から、1.89kWを引いて1.1kWが残ります。

上記2つは電気回路によって発生するジュール損ですから、残りの1.1kWは、風切りやベアリングなどによる機械的損失分という事が求まります。これを固定損と呼び、問題はこれを求めるというものです。

SAT電験3種講座 猫電 質問回答(力率の定義)

電験3種の講座の電気基礎講座テキスト38ページ

力率が悪いというのは、力率100%と力率10%ではどちらが悪いと判断するのでしょうか。

力率というのは、見かけの電圧×電流で求める皮相電力に比べ、実際に消費された(エネルギーとして取り出せた)電力の割合を表す数字です。

したがって、力率10%というのは、大きな電圧×電流を流し込んでいるのに、実際に得られるパワーが小さい事を意味しますので、力率10%のほうが悪いという事になります。ちなみに、最高が100%、最低が0%です。

SAT電験3種講座 機械 質問回答(直流電動機の励磁電流・回転速度・逆起電力の関係)

機械の直流電動機について、機械テキストでいう、p7の他励電動機の回転数は、励磁電流増加に伴い低下するとありますが、磁束が増えて逆起電力が増加すれば比例して回転速度は上がるもしくは変わらないと思うのですが。直流電動機の回転速度=電動機の逆起電力/比例定数×磁束という式から考えて疑問に思いました。

まず、「磁束が増えて逆起電力が増加」するところまではその通りです。

コイルを磁束が横切る時に発生する逆起電力は、ファラデーの電磁誘導の法則ですから、回転数と磁束の大きさと巻き数に比例します。当然、同じ回転数であれば、磁束が増えれば逆起電力も増加します。

さて、このとき、電源電圧は一定ですから、逆起電力が増加するということは、回転子の逆起電力と電源電圧の差の電圧が減少することになります。すると当然、回転子に流れる電流も減少します。回転子に流れる電流が減少すれば、出力のトルクも減少し、回転数が減少することになります。回転数が減少すれば逆起電力も減少し、回転子の逆起電力と電源電圧の差の電圧が増加することで回転子に流れる電流が増加し、出力トルクが増大します。これが均衡する点で回転を維持していくということになります。

SAT電験3種講座 猫電 質問回答(抵抗の電圧降下と電位差)

電気基礎講座P44-Q03の問題について

解き方としては、断線部分をまずないものとして直列の回路図として考え

  1. 電圧を100V+100Vで200V
  2. 直列なので、20Ω+30Ω=50Ω
  3. 200Vを50Ωで割り算し4Aを出す
  4. そして20Ωと30Ωの電圧を導き出し80Ω・120Ωとする。

それからa点が100V・b点の電圧200-80=120Vですが、どうしてそうなるのかがよくわかりません。

御質問承りました。考え方として、1~4まで、全く問題ありません。

電圧というのは、相対的なものです。例えば、乾電池は1.5Vの電圧ですが、マイナス端子を基準にすればプラス端子が+1.5V、プラス端子を基準にすれば、マイナス端子がー1.5Vの電圧になります。

1の段階で、「電圧を100V+100Vで200V」としていますが、これは暗黙のうちに、回路の一番下の電線を基準の0Vとし、端子aが+100V、そして上の電池の+端子が+200Vとしています。逆に、a端子を基準にして、上側の電池の+端子を+100V、下側の電池のー端子をー100Vと考えても構いません。

以上のことを念頭に置いて、暗黙のうちに一番下の電線を基準の0Vとして考えます。端子a・b部分を無いものとして考えると、100Vの電池が2個直列、そして負荷に20Ωと30Ωの合計50Ωがつながっています。負荷の30Ωの下側端子が0V、20Ωの上側端子が+200Vですから、ここに流れる電流は、オームの法則から200÷50=4A。すると、20Ωの両端に発生する電圧が4×20=80V、30Ωの両端に発生する電圧が4×30=120V。従って、30Ωの下側の端子が0V、上側の端子が120V。

ここで、端子aは、一番下の線を0Vとして考えると+100Vが出ていますから、a-b間の電圧は120-100=20V、以上答えとなります。

SAT電験3種講座 機械 質問回答(直流直巻電動機の無負荷特性)

電験3種の機械テキストP9についての質問です。

直流直巻電動機で無負荷のとき回転数が∞になるのは数式的にはわかるのですがどのようなイメージで回転数が∞になるのですか?

まず、電動機が回転力を生む仕組みについておさらいします。これは、固定巻線が
作る磁界と、回転巻線が作る磁界どうしが吸引、もしくは反発の力を発生すること
で回転します。当然、大きな力が必要な時は、固定巻線・回転巻線ともに大電流を
流す必要があるわけです。

さて、直流直巻電動機は、回転巻線の電流=固定巻線の電流となっているのが特徴
です。そして、電源電圧が一定で負荷が軽い(=巻線電流が小さい)とき、回転巻
線の逆起電力は電源電圧とほぼ同じです。

直流直巻電動機を無負荷で回転させたとします。すると、回転が上がり、固
定巻線の磁界×回転巻線の磁界×回転数に比例した逆起電圧が発生します。このと
き、機械的な負荷がゼロということは、回路電流は減少していきますが、回路電流
が減少すれば固定巻線の磁界×回転巻線の磁界も減少しますから、回転数が上昇す
ることで逆起電圧を上昇させます。機械的な負荷がゼロ=出力がゼロ=回路電流も
ゼロに近づいていきますから、結局回転数がどんどん上昇する、そういう仕組みで
す。

単に式や性質を暗記するよりも、このように原理をイメージできることが物凄く大
切な資産になりますので、大変良い質問だと思いました。

2017年版 SAT電験3種講座テキスト誤植訂正(理論編)

  • P17の⑥の式

誤:-i1-4i2+5i3=40

正:-i1-4i2+5i3=10

  • P62の中段箇所

誤:共振状態において、RL並列部分の合成リアクタンスは無限大

正:共振状態において、LC並列部分の合成リアクタンスは無限大

  • P95P.55の計算式、上の囲みの2行目

最後の「-j」の前に「=」を追加

  • P105の解説の欄

誤:F=μH

正:F=mH

  • P116の中段箇所の相互インダクタンスの解説

M=μSN1N2/I(アイの大文字)→M=μSN1N2/ℓ(エルの小文字)

SAT電験3種講座 機械 質問回答(誘導電動機の起動トルク)

電験3種の機械テキストP17に関しての質問です。

誘導電動機で始動時には多くの磁界が2次側に貫くので大電流がながれるのはわかるのですがなぜトルクが小さいのですか?

T=KΦIでトルクは大きくなりそうな気がするのですが。

ご質問承りました。

これは、誘導電動機の力率が悪いから、ということに他なりません。

誘導電動機の二次側回路は、両端が短絡されたコイルとなっています。従って、誘導電動機の一次側:二次側の関係は、二次側が短絡された変圧器と同様にみなせます。

ここに電源を供給すると、二次側回路が短絡されているために大きな電流が流れます。ここで、直流電動機であればT=KΦIで簡単に考えることができますが、交流電動機であるため、一次側コイルと二次側コイルが作る磁界のタイミングを考えなければいけません。つまり、

  • 一次側がN極の時に二次側もちょうどN極(あるいはS極)

になれば、大きな反発力や吸引力が生まれますが、

  • 一次側が磁界最大時に二次側が磁界ゼロ
  • 一次側の磁界がゼロの瞬間に二次側の磁界が最大

というタイミングになってしまうと大きなトルクは生まれません。

このタイミングを左右するのは、二次側回路の力率です。しかし、二次側回路は短絡されているため極めて低抵抗で、有効電力が消費されない=力率が非常に悪いため、そのタイミングのずれが大きく、大電流のわりに大きなトルクが発生しません。

回転が上がってくると、一次側と二次側の回転数の差が小さくなるため二次側コイルを横切る磁界の時間変化が小さくなり、二次側回路に誘導される電圧が低下します。

すると、極めて低抵抗であった二次側回路の抵抗値が、相対的に無視できない値になってきます。例を挙げると、1000Vの電源回路に1Ωの抵抗が直列に入っていても大した影響はないのに対し、0.1Vの電圧に対して1Ωの抵抗は大きな影響を与える、という感じです。

従って、回転数が上がってくると力率が向上し、その結果大きなトルクが生まれていく、ということになります。

SAT電験3種講座 猫電 質問回答(コイル・コンデンサのリアクタンスベクトルの誤りと訂正)

P34のRLC直列回路でのインピーダンスで、図ではコイルのリアクタンスのベクトルは下向きのマイナスを向いています。電圧の合成の図ではコイルの電圧のベクトルが上方のプラスだったのに対し、なぜリアクタンスの図では逆を向いているか?ということについて毛馬内先生は詳しく解説されています。虚数を使ってコイルのリアクタンスはXL=VL/-jIになり、=jV/Iでプラスになる。とここまでは理解できるのですが、そのあとで先生は、「だから先ほどとは(電圧のベクトル?)逆になっているんですよ」とおっしゃっています。ここが理解できていません。

私の理解では、XL=VL/-jI なら電圧基準で電流側がマイナス90度遅れているのでベクトルは下向きのイメージですが、本質的にはXL=jV/Iになりプラスになると思うのでベクトルの方向は上向きのプラスになるのではないか?という疑問がぬぐい切れません。なのにどうして図のコイルのリアクタンスのベクトルはマイナスの方向を向いているのでしょうか?ちなみにその直後の説明で、コイルの場合もV/+jI=-jV/Iとご説明されているのはコンデンサのことのように思えます。よろしくお願いします。

ご質問承りました。

まず、この部分につきましては、完全に私のミスでございます。

ご指摘の通り、電圧のベクトルとインピーダンスのベクトル、いずれも上向きがコイル、下向きがコンデンサとなります。

これは、収録時に使用した図をトレースした際、上下がひっくり返っていたことに気付かずにそれをそのまま喋ってしまったことが原因でした。

とはいえ、収録前に精査せず喋ってしまったのは私の落ち度ですので、深くお詫び申し上げます。(そういえば、収録時になんか違和感を覚えていたのは確かです。その時にビデオを停止して良く確認すべきでした。)

今年2017年の夏には、電験3種の講座を再集録する予定でございますので、このようなミスの無いよう十分に気を付けて臨むことにいたします。

ご迷惑をお掛けして誠に申し訳ございませんでした。