「SAT」カテゴリーアーカイブ

SAT電験3種講座 理論 質問回答(抵抗とコイルの過渡現象)

Sのスイッチを閉じた状態でコイルが0オームになった際、電流がコイルに3A流れます。その際コイルと並列にある20オームの抵抗部分には電流が流れない認識でよろしいのでしょうか。

おっしゃる通り、コイルが0Ωで3Aの電流が流れているとき、並列の抵抗には全く電流が流れません。

一見、いくら何でも少しは電流が流れそう?な気がしてしまいますが、コイルが0Ωということはコイルの両端に発生する電圧も0ボルトです。ということは、並列になっている20Ωの抵抗の両端の電圧も0ボルトになります。

オームの法則から、抵抗に流れる電流は、I=V/Rで求められますので、V=0であれば電流Iも必ずゼロとなるわけです。

SAT電験3種講座 理論 質問回答(三相交流のΔ結線とY結線)

理論テキストp77の例題の質問です。①の電源をΔ結線に変換した場合で200VのY型結線電源をΔ結線に変換した場合、線間電圧は200Vの√3倍になるのはどうしてですか?

三相交流というのは、互いに120°ずつ位相がずれた3個の単相交流電源を、Y型もしくはΔ型に接続したものです。具体的な波形をエクセルで作ってグラフにしたものを以下に示します。


ここでは、それぞれの電圧の最大値を1としてグラフにしているので、Δ結線にすれば線間電圧もそのまま最大値が1となります。

これらをY結線にした場合、互いに120°位相がずれた単相交流2つの電圧差が線間電圧となります。したがって、これもエクセルでグラフにしてみました。黒の線が位相差ゼロの電源、赤の線が位相差120°の電源、そして青の線が、それら2つの電圧の差を取ったものです。

グラフからも分かるように、差を取った最大値は約1.7倍になっていることが見て取れるかと思います。

なお、方眼紙に手書きでベクトル図を描いたものも添付します。cos30°の2倍、つまり(√3/2)×2で√3倍になるのが分かるかと思います。

理論のテキストの例題などを復習した後、過去問に取り組もうと思うのですがどのように進めていけばよろしいですか?

勉強の進め方は人それぞれ好みがありますから、このように勉強するのが絶対的に正しい、というものはありませんが、参考までに私なりの勉強方法は次の通りです。

ある程度理解できたと思ったら、過去数年分の過去問をまずは何も見ずに解いていき、今の知識で解けるものと解けないものに分けます。解けない問題については、ある程度途中まで見当がつく問題から順に、解説や資料、ネット上の情報などを活用して解き方を見つつ、何も見ずに解けるようになるまで練習していきます。これを繰り返すことで、次第に何も見ずにほとんどの問題が解けるようになるのではないでしょうか。

言うまでもなく、意味は分からないけど答えは何番、という暗記をしても無意味ですから、きちんと納得できる理屈を理解するというのが大切です。

SAT電験3種講座 理論 質問回答(電験3種 平成19年 理論 問17a)

理論123ページの最後の項目の10/1.6×10の-19乗×1.69×10の 23乗の答えが3.7×10の-4になるのか、分かりません。計算方法を教えて下さい。

丁寧に計算したもののスキャンを添付しますので、ご確認いただければと思います。

「10の何乗」とか小数・分数が入り混じってくると計算が大変になりますが、一歩ずつ進めていただければ回答は出ますし、試験にも電卓が持ち込めますので、そう恐れる必要はないでしょう。

SAT電験3種講座 機械 質問回答(平滑回路におけるコイルとコンデンサの働き)

電験3種機械14ダイオードに関する質問です。脈絡をなくすためにコイルは負荷に直列、コンデンサは並列に接続すると例題でおっしゃられていましたがなぜですか。

まず、コイルとコンデンサの性質についておさらいします。

コイルは、直流に対してはゼロΩ、そして交流に対しては、周波数に比例したリアクタンスを持ちます。つまり、直流を通し、交流を通しにくい性質を持ちます。

コンデンサは、直流に対しては電流を流さず、交流に対しては周波数に反比例したリアクタンスを持ちます。つまり、直流を阻止し、交流を通しやすい性質を持ちます。

脈流というのは、直流と交流が混ざっている状態です。したがって、負荷に向かって電流が流れる途中にコイルを入れると、直流は素通しし、交流に対しては通しにくいことになります。コンデンサを並列に挿入すると、負荷に流すべき直流は通過させず、負荷に流したくない交流成分を負荷に流さずコンデンサの中を通してしまう役割を果たします。

これらの働きにより、脈流を直流化して負荷に供給することができます。

SAT電験3種講座 機械 質問回答(電験3種 平成28年 機械 問4 過去問解説 誘導電動機の二次入力、滑りと機械出力)

解説の中で、回転速度、同期速度から、滑りを求めています。そこから、下記計算によって、二次入力を求めています。

  • 二次入力×(1-S)=機械出力
  • P×(1-0.045)=20

以上から、二次入力は、20.9W
この部分↓の考え方が分からないです。

  • 二次入力×(1-S)=機械出力

参考書をみると

  • 二次入力:二次銅損:機械出力=1:S:(1-S)

となる、とあります。(覚えるとのこと)

これからすると、確かにそのような式になるのですが、なぜそのようになるのでしょうか?

そのように覚えればいいのですが、納得のいく理解ができていません。テキストを見直しましたが、その理由がいまいちわかりませんでした。解説の方ををお願いいたします。

 

滑りが0のとき、どうして二次回路に誘起される電圧がゼロになるのですか?滑りが1のとき、二次回路に誘起される電圧が最大値になるのはどうしてですか?s=0.1のとき、二次回路に発生する電圧は静止状態のときの0.1倍になるのはどうしてですか?一次側一相に換算した全抵抗分が90Ωになるのはどうしてですか?

それでは、順番に考えていきます。

誘導電動機というのは、三相交流によって作られる回転磁界の中に、両端を低抵抗で短絡された(巻線型誘導電動機の場合は、その抵抗を外部に引き出して特性を調整できます)回転コイルが挿入されているものです。電源が投入されると、回転コイルを横切る磁界が加えられますから、ファラデーの電磁誘導の法則にしたがい、回転コイルである二次側回路にも電圧が誘起されます。

これはちょうど変圧器と全く同じ構造ですが、二次側のコイルが機械的に回転するところが変圧器と異なる部分です。変圧器であれば、一次側に50Hzの電流を流せば二次側も50Hzとなりますが、誘導電動機の場合、もし仮に二次側コイルが、電源周波数によって作られる磁界の回転速度(同期速度)の半分の速さで回転していたとすると、相対的な周波数は25Hzとなり、二次側回路に発生する電圧の周波数は25Hzです。これはちょうど、100km/hで走る車を止まって見れば100km/hですが、60km/hで走る車から見ると相対的に40km/hに見えるのと同じ原理です。

ここで、滑りsを定義します。滑りは、

  • 磁界の同期速度に対して、回転速度の差が同期速度の何割であるか

の値です。s=1なら二次側の回転速度はゼロで、s=0なら、回転速度=同期速度です。例えば、s=0.1であれば、回転速度は同期速度の90%となります。

このとき、二次側に誘起される交流の周波数は、同期速度と回転速度の差になりますから、s=0なら50Hz、s=0.1なら5Hzです。つまり、二次側コイルの回転速度によって、二次側コイルに流れる電流の周波数は50Hz~0Hzまで変化することになります。
以上の事を前提として、誘導電動機の二次側の等価回路を考えます。

二次側回路は、変圧器の二次側巻線に直列抵抗と直列リアクタンスが入ったものですから、下図のように表せます。

s=1、つまり停止時に誘起される電圧をE2、その時のコイルのリアクタンスをxとします。

回転が上がってくるとs値は1~0の間の値になります。ファラデーの電磁誘導則から、コイルに発生する電圧は単位時間あたりに横切る磁束に比例するため、二次側に誘起される周波数だけでなく電圧も低下していきます。

したがって、二次側回路の電圧源をsE2、そしてコイルのリアクタンスも周波数に比例しますからsx、そして抵抗は周波数や電圧・電流に関係なくrとなるため、上図のような回路と見なすことができます。この回路は、

  • 電圧がsE2
  • 負荷がr+sx

なので、二次回路に流れる電流は、図中にも書いたように

  • I=sE2/√(r^2+s^2x^2)

です。電圧・抵抗・リアクタンスを全てsで割っても回路電流は同じはずですから、図で書いたように

  • I=E2/√((r/s)^2+x^2)

と書くこともできます。

次に、この回路に機械的出力を生み出す負荷抵抗に相当する抵抗Rを入れます。先ほどの回路でr/sとした二次回路の抵抗をrに戻し、その代わりR=(r/s)-rと置くことで、図の回路の全体的な電圧・電流・抵抗・リアクタンスを同じにすることができます。

何故r/sをrに戻したかというと、二次回路に流れる電流Iは仮想的な値ではなく実電流であり、その実電流の2乗に、仮想的なr/sではなく実抵抗のrを掛けたもの(P=r×I^2)が実銅損になるからです。

Rは、もちろん実際に回路に挿入される実抵抗ではなく、機械出力となる仮想抵抗です。この仮想抵抗はどこに存在するかというと、一次巻線と二次巻線との相互作用により、二次巻線に誘起される力率1の電圧として現れます。

電気回路・交流回路の基本に立ち返って考えてみると、

  • 電流Iが流れたとき、電圧Vが発生すれば、それは抵抗R=V/I
  • 交流電流Iが流れたとき、それと全く同位相の電圧Vが発生すれば、それは実電力を消費する力率1の抵抗R=V/I

だったはずです。したがって、一次巻線との相互作用により、二次巻線に流れる電流Iと同相で電流を妨げる向きの電圧Vが発生すれば、それは仮想的に抵抗V/Iと同じなのです。この仮想抵抗で消費される電力は、もちろん熱となるのではなく、電動機の機械的出力となります。

この抵抗Rを挿入した回路において、実電流Iが流れたときの電力損失を求めると、全電力はI^2(R+r)、銅損はI^2r、そして機械出力はI^2Rとなり、これらの比は1:s:(1-s)となります。

SAT電験3種講座 理論 質問回答(電験3種 平成21年 理論 問16 抵抗のΔ-Y変換)

理論P34例題についてですが、解説のデルタ部分をスターにした図で、なぜR/3Ωになるのかがわかりません。またデルタからスターへの変換の仕方がよくわかりません。よろしくお願い致します。

Δ-Y変換あるいはYーΔ変換というのは、抵抗3本がΔ型に接続されている回路とY型に接続されている回路がある場合、その3端子から内部を見た挙動が全く同じに見えるΔ回路とY回路が存在し、それらを相互に変換することができる、というものです。

一例として、例題の前に描いてあるΔ回路やY回路の図について考えます。

もし、仮に30Ωの抵抗3本がΔ型に接続されている場合、a-b端子(もしくはb-c、a-cのいずれでも良い)を外部から見た場合の抵抗値を考えます。

これは、30Ωの抵抗と、a-c-bという経路で30Ω2本が直列に接続された60Ωの抵抗が並列に接続されているように見えます。したがって、a-b間の抵抗値は、並列の計算式を用いて20Ωと求まります。

つまり、30Ωが3本のΔ型回路は、どの2端子間を見ても20Ωに見えるわけです。

次に、Y型回路を考えます。Δ型回路と同様に端子a-b間の抵抗値を求めると、これは端子a-R-中点ーR-bのように、抵抗2本が直列になっている回路に見えます。ということは、端子a-b間、b-c間、c-a間、いずれも2Rの抵抗値を持ちます。

ここでΔ型回路と対比して考えると、R=10Ωであれば、どの端子間も20Ωに見えることになります。

つまり、10Ωが3本のY型回路は、どの2端子間を見ても20Ωに見えるわけです。

以上のように、Δ回路をY回路にする場合、抵抗値は1/3になることが分かります。これを使って、Δ回路の一素子RをR/3に変換してY型にすることで回路を簡略化し、求めやすくしているのが例題の解き方です。

SAT電験3種講座 猫電 質問回答(コイルとコンデンサの基本的性質)

e-ラーニング講座の猫でもわかる電気基礎の中の⑧コイルとコンデンサ中で、テキストには載っていないが、講師の方が時間にすると16分あたりから右上に説明している青と赤のペンで書かれた図で、電圧と電流の向きの説明の意味がよくわからないです。なぜそのような向きになるのかを、教えてください。お願いします。ちなみに、私は電気は全くの素人で、中学で習ったのが最後ですので、その程度のレベルでもわかるように出来たらお願いします。もしくは、「後々の講座で詳しく説明してあるから、今は流せばいいよ」というのであれば教えてください。よろしくお願いします。
わからなかったのは、電気基礎の講座の中の8②のコイルとコンデンサの中の16分過ぎの右上に書かれた青と赤の図の事でした。よろしくお願いします

交流回路、とくにコイルやコンデンサについては、電機の勉強を本格的に始めた人が必ず引っかかる大きなハードルです。何故そうなるかというと、

  • 電圧は時間的に変化する。
  • 電流も時間的に変化する。
  • 電圧の波形と電流の波形が、時間的にずれることがある。

というイメージが付きにくいことにあります。

乾電池と豆電球、そしてオームの法則のレベルですと、例えば電圧は1.5Vならいつまでも1.5V、電流は2Aなら2Aとなり、電池がだんだん消耗してきて電圧や電流が減ってくるという例を別にすれば、時間的に変化することを考える必要はありませんでした。しかし、交流では、電圧がゼロの瞬間もあれば+50V、+80Vの瞬間もあり、また別の瞬間では-30Vのように、大きさだけでなくプラスマイナスすら常に変化しています。電流も同様です。

そして、電圧と電流の波形が時間的にずれるというのは、電圧が+10Vなのに電流は-4Aの瞬間があったり、またある瞬間では電圧が+40V、電流が2A、ある瞬間では電圧が0Vで電流が-1A…などのように、電圧と電流のプラスマイナスすらあべこべにになってしまう事もあるということです。

何故そんなことが起こるかというと、コイルが流れてきた電流を磁界(磁石)のエネルギとしていったん蓄え、そしてそれを時間的に遅れて放出したり、コンデンサが流れてきた電流を電界のエネルギとしていったん蓄え、それを時間的に遅れて放出…のような働きをしているからです。このように、時間的な波形のタイミングという話をしたくて図を描いたのだったと思います。

もちろん、そんな面倒な話は置いといて公式だけ覚えればいい、という考えもあると言えばあるんですが、先々応用が利くようになるためには、このような基本をおろそかにできないと思います。また、併せて参考書籍として、古い本ではありますが「学研の図鑑・電気」が手に入ればお勧めします。Amazonなどで探すとプレミアがついて非常に高い値段が付いていますが、たまにブックオフで500円程度で見かけることもあります。

今すぐは良く分からなくても、このコイルやコンデンサの働きについては電験3種の本論の話していますので、適宜読み進めたり書籍やネットの情報なども活用して勉強を進めていただければと思います。

SAT4類消防設備士講座 質問回答(製図問題、警戒区域数と共通線の本数)

消防設備士4類の実技の系統図で悩んでいます。

P型1級で共通線IVの数(消火設備はなし・表示灯線IVは2本・ベルはHIV2本は除外の場合)ですが、7警戒までは1本となっています。ここまでは理解できるのですが、問題で7警戒あった場合共通線は1本で良いのでしょうか?もしくは、応答線と電話線は含まれて9警戒?となるならば、2本必要ではないかととらえるのが正しいのでしょうか?よろしくお願いします。

感知器回路の共通線ですが、これは基本的に他の回路と共通使用することはできないですから、7警戒区域の場合は、それぞれの警戒区域に至る感知回路の線7本+共通線の合計8本という事になります。8警戒区域の場合は、感知回路の線が8本+共通線2本の合計10本という事になります。

蛇足ですが、この場合7警戒区域が共通線1本+1区域の1本としても悪くはない(動作しない訳ではない)のですが、もし万が一7区域の共通線に断線などの不具合があった場合の影響が大きいですから、4区域に共通線1本+残りの4区域に共通線1本とした方が好ましいことになります。

これは、実際の製図の試験の図面において、8警戒区域以上存在する場合の設計図面で「共通線は均等に割り付けること」という条件が出る可能性もありますので、念のために付け加えておきました。

SAT電験3種講座 法規 質問回答(電験3種 平成22年 法規 問12b D種接地抵抗値の計算)

P.28例題
D種接地抵抗値を求めるのに式の展開が分かりません。どのように求めたらいいのでしょうか。

この問題は、理論の基礎で学んでいるオームの法則、抵抗の並列回路の合成抵抗値、流れる電流の計算が基本となります。
接地抵抗と人体の抵抗が並列となった場合、そこに発生する電圧や人体に流れる電流を求めることになります。
抵抗の並列の計算式が入るため、計算が若干面倒になりますが、ひとつひとつ段階を踏んで計算していただければ良いでしょう。