「電験3種」カテゴリーアーカイブ

SAT電験3種講座 電力 質問回答(電験3種 平成24年 電力 問7 過去問解説 安定度制約の意味と概念)

電力過去問24年問7

安定度制約とはなんでしょうか?直流、交流の安定度の制約の違いについても教えてください。

「安定度制約」ですが、これは交流送電と直流送電の俯瞰的イメージを正しく持つことが必要になります。

電気回路的には、交流だろうが直流だろうが、発電ー送電ー消費、と電線で結ばれているだけです。しかし実際には、複数の発電所から複数の変電所を通り、ときには結合、時には分岐して最終的な電力消費点まで運ばれています。また、発電所から消費地までの距離は数百kmなどの長距離であることも多く、いくら電気の伝わる速度が1秒間に30万kmという高速であったとしても、途中の対地静電容量、送電線のリアクタンス、変圧器の作用などの様々な影響を受けることで過渡的に電流や電圧の揺らぎが発生し、各発電所からの送電電力や位相などが時間的に脈動するという現象が現れます。これを物理的・数学的に解析するのは非常に大変なのですが、身近な例で何か分かりやすい置き換えがないかと考えたところ、次のような例が思い付きました。

 

色々な方面から道路が集まってきて、大きな一つの道路になるという状況を考えます。このとき、集まってくる道路は各々に様々な性質を持っています。

  • 1車線の道路だけど、ここまでに途中2車線になったり3車線になったり、また1車線に戻ったりして最終的に1車線でやってくる道。
  • 2車線の道路だけど、途中1か所で1車線に絞られて、また2車線に戻ってやってくる道。
  • 3車線の道路で、途中車線が変わることなく3車線のままで来る道。
  • 4車線の道路で、途中8車線に膨らんで、最後でまた4車線に絞られて来た道。

これらが集まって合計10車線になったとします。

この10車線の道が渋滞してあまり進まないとき、ここに至る4本の道からは車線数に比例して車が入ってきます。

適度に流れているときも、まあほぼ車線数に比例して車が入ってくるでしょう。

ところが、この10車線の道に全く車がおらず、4本の道から可能な限り最大の車が流入してくるとしたら、それぞれの道の途中の車線の状況が影響し、1:2:3:4で綺麗に比例して流れ込むことにはならないはずです。つまり、10車線を全速力で車が走ることはできず、そこに至るまでの4本の道の途中の性質が影響として出てきてしまいます。

つまり、交流送電線路の途中のリアクタンスや静電容量、変圧器の特性の影響などが存在する(=道路の途中に幅広部分があったり絞り部分があったりする)場合、多数の送電線路を連結して電力を供給するとき、それらの送電線路の能力100%の電力を供給しようとすると、それぞれの経路に過渡的な偏りが生じてしまい、その結果電力供給が不安定になってしまいます

この不安定さを緩和するためには、合流して10車線になった道路に適度に渋滞がある(=その100%の能力を供給せず、ある程度の所で電力を抑える)ことが必要となります。これが安定度制約です。

一方、直流送電の場合は、その「途中の車線の状況」が存在せず、1車線なら最初から最後まで全部1車線、3車線なら常にずっと3車線の道が合流しますから、たとえ10車線の道が可能な限り最大の車を流していても、それは綺麗に1:2:3:4と配分され、それぞれの道が割合ごとに綺麗に車の量を分担することになります。つまり100%の能力を発揮しても安定して送電ができることになります。

SAT電験3種講座 法規 質問回答(電験3種 平成25年 法規 問11(a) 過去問解説 高圧進相コンデンサの劣化判断計算)

平成25年度の法規過去問題の問11の(a)の解説におきまして先生は50kvar/(6600V/√3)で無効電流を出してそれぞれの比にあてて計算すればいいと解説がありましたがいくらやっても導き出せません。分母が√3×6600であれば答えが出たのですが、私の勘違いでしょうか。ご教授お願い致します。

まず、内部素子がY結線ですから、一相分について考えてみます。

一相分の相電圧は、(6600/√3)Vです。

また、コンデンサの全容量が50kVarですから、一相分については(50/3)kVarです。

コンデンサの無効電力は、電圧×電流で求められますから、これよりコンデンサに流れ込む電流を求めると、

(50000/3)÷(6600/√3)=約4.37Aとなります。これが定格電流になります。

ここで、S相とT相はその1.15倍ですから、約5.0A、R相は1.5倍で約6.6Aが求まります。

SAT電験3種講座 電力 質問回答(電験3種 平成25年 電力 問13 過去問解説 配電線路の電圧降下計算)

H25電力過去問題、問13について質問です。

A-B間の電圧降下E=√3×100×(0.3×0.8+0.2×0.6)は問題ないのですが、S-A間の電圧降下を求める際に、A点での電流が150+100=250Aで算出すると回答が導かれるのですが、なぜ250Aになるのでしょうか?どのように解釈すればよいのでしょうか?お手数ですが、ご教授お願いします。

この問題の図は、電源SからA点までの電線1km、そしてA点からB点までの電線1kmが引かれ、B点での負荷電流はS~A~Bと2km流れ、A点での負荷電流はS~Aと1km流れて供給されています。

従って、S~Aの間は、A点での負荷電流とB点での負荷電流が一緒に流れることになります。

 

 

SAT電験3種講座 理論 質問回答(コイルの自己インダクタンスと相互インダクタンスの計算)

理論37 磁気回路のオームの法則内の質問です。テキスト77ページの冒頭にある自己インダクタンスと末にある相互インダクタンスの変換後の式の過程を教えてください。

まず、76ページのコイルにおいて、鉄心に磁束を発生させる源はコイルの電流と巻数の積、Niです。電気回路でいうと、これは発電の電圧と同じです。

このとき、ソレノイド内に流れる磁束(電気回路でいうと電流)は、このNiを磁気抵抗で割った値です。

磁気抵抗は、電線と同様、ソレノイドの長さに比例して断面積に反比例します。また、電線の抵抗率に対して磁気は透磁率の逆数ですから、流れる磁束φは、磁路長をIとして

  • φ=Ni÷(l/μS)=μNSi/I

で表されます。

コイルの自己インダクタンスLは、コイルに流れる磁力をφ、巻数をN、流れる電流をiとすると、

  • L=Nφ/i

で求められるので、ここに上記のφを代入すると、

  • L= Nφ/i=N(μNSi/l)/i=μSN^2/l

となります。これがP.77二段目の式です。

コイルの自己インダクタンスは、その作用の大きさを意味します。式中の巻数の2乗は、「コイルに流した電流によって自分で作り出した磁束が、今度はコイル自身に戻ってきて自分自身に影響を与える」ことを意味しています。巻数Nが大きいほど、電流によって作り出す磁束が大きくなり、その磁束がコイル自分自身にまた大きく作用する、ということになります。

さて、コイルが自分が自分自身に影響を与える度合いではなく、一次側と二次側の巻線があり、一次側のコイルが作った磁束が二次側に与える影響を考えるときは、上記の式の(μS/l)に一次側と二次側のN1とN2を掛けた値になり、これが相互作用を意味する相互インダクタンスの式になります。

SAT電験3種講座 機械 質問回答(変圧器の等価回路)

機械編P11

巻線比を用いて一次側に換算して表現しているとありますが巻線比とはどういうことですか?この回路は変圧器の働きのどこを等価にしたものなのでしょうか?

変圧器というのは、理論編の合成インダクタンスのところで出てきた、相互インダクタンスを持つ2組の巻線のことです。

より具体的に言うと、鉄心を介して磁気的に結合した2組の巻線で、片方の巻線に電流を流すと、その電流によって鉄心内には磁束変化が発生し、その磁束が他方の巻線を通過することで、その巻線に電圧を発生させるものです。我々の身近で、高圧の6600Vを100Vや200Vに変換するための装置として、あるいは100Vの交流から携帯電話の充電などに使う低い電圧を作り出すためなどに広く利用されています。

巻数比は、一次側と二次側の巻数の比のことで、例えば一次側巻線が10000回、二次側巻線が500回巻いてあるとすると、10000:500=20:1となります。コイルを貫く磁束変化は電圧を発生させることから、巻数比が20:1の変圧器は、一次側電圧:二次側電圧=20:1となります。

さて、このような変圧器ですが、現実問題として巻線に使う銅の直列抵抗、そして導線を巻いてあることによるインダクタンスとそのインダクタンスによって生じるコイルとしてのリアクタンス、その他の損失要因などを評価する場合、何らかの等価回路に置き換え、その置き換えた等価回路内の抵抗値やリアクタンス値を用いて変圧器の特性を考えることになります。

ここで、本来変圧器は一次側と二次側は絶縁されていますが、上記のような直列抵抗やリアクタンス等を評価する場合、一次側と二次側が絶縁されているかどうかということは重要ではありません。要は、一次側から見てどのような回路素子に見えるか、というのが論点なわけです。

変圧器の巻数比をn:1とすると、電圧比はn:1です。一次側と二次側で電力は変わりませんから、二次側は電圧が1/n倍になった分、電流はn倍となります。

この変圧器に、仮に二次側に抵抗Rを接続した場合を考えます。二次側に発生する電圧をVとすると、流れる電流はV/Rです。これを一次側に変換すると、

  1. 電圧はnV
  2. 電流はV/nR

となります。したがって、一次側から見ると、

  • 電圧がnVのときに、V/nRの電流が流れる抵抗

と見なせます。この値を計算すると、

  • 電圧÷電流=nV/(V/nR) =n^2R

となり、

  • 巻数比1:nの変圧器の二次側に抵抗Rをつなぐと、一次側からはn^2倍の値に見える

ことが求められます。これを回路図に起こしたものがP11の回路図で、

  1. 一次側の直列抵抗をr1、リアクタンスをx1
  2. 二次側の直列抵抗を一次側に変換したものがa^2r2、リアクタンスを変換したものがa^x2、二次側負荷のZ2を変換したものがa^2Z2

となって、一次側から見た等価インピーダンスになる、ということを示しています。

2017年夏の講座収録

8月2日から大阪に来て、SATの電験3種講座を収録しています。

本来なら毎年改訂するのが望ましいのでしょうけど、なかなかそうも行かず。

テキストは、理論の細かい修正と、電力・機械・法規の大幅改定を行いました。

進行具合は、3~6日で理論編の収録を終え、電力に少し入った所です。早くもテキストの誤植を色々と見つけて(*´Д`*)…

明日の大阪は台風で物凄い荒天になりそうですが、ま、頑張ります。

 

SAT電験3種講座 理論 質問回答(電験3種 平成25年 理論 問7 過去問解説 RC直列回路のインピーダンス計算)

理論 問7で答えが、20A×1.2倍=24A になるのになぜ、(4)24.0ではなく (3)21.2が正解になるのでしょうか?

この問題は、「4Ωの抵抗とCファラドのコンデンサを直列にした回路」である点がポイントです。もし抵抗がなく、純粋にコンデンサのみであれば、単純に20A×1.2倍になりますが、抵抗は電源周波数が変化しても値が変わらないため、きちんとRC直列回路のインピーダンスを求めなければいけません。

50Hz100Vの電源に対して20Aの電流が流れたということは、RC直列回路のインピーダンスは5Ωです。

抵抗が4Ωであることが分かっているので、このときのコンデンサのリアクタンスをXとすると、

  • √(4^2+X^2)=5

ということになり、両辺を2乗して

  • 16+X^2=25

ですから、X^2=9よりX=3Ωです。

さて、コンデンサのリアクタンスは1/(jωC)ですから周波数に反比例します。したがって、50Hzで3Ωのリアクタンスを持つコンデンサは、60Hzではその1/1.2、つまり2.5Ωのリアクタンスとなります。

以上より、60Hz時のRC直列回路全体のインピーダンスは、

  • √(4^2+2.5^2)≒4.72Ω

ですから、このとき回路に流れる電流は、

  • 100÷4.72≒21.2A

と求まります。

SAT電験3種講座 機械 質問回答(電験3種 平成24年 機械 問15 インバータ電源回路に低い高周波インピーダンスが求められる理由)

電験3種機械過去問H24年問15テキストP426

(b)の1で直流電源の高周波インピーダンスが低いことが要求されるとありますが理由を教えてもらっていいですか。

この回路はインバータですから、直流電源Eからの電流を半導体スイッチで切り替え、負荷に対して正負交互に電流を流しています。

従って、直流電源Eは、負荷に対して十分な電流を流すことができる電圧源(内部インピーダンスが極小)である必要があります。

しかし、その上であえて「高周波インピーダンスが低い」という条件が追加されている理由は、半導体スイッチの切り替え時に電源には過渡的な電流変動が発生し、その電流変動は高い(半導体スイッチの切り替えに伴う50Hzや60Hzではなく、数~数十kHzにも及ぶ)周波数の成分を含んでいるからです。そのような高い周波数成分に対しても十分に低インピーダンスの電圧源にしないと、負荷に供給される電流波形が歪んでしまい、思ったような電力を供給することが出来なくなります。

これを解消するため、一般的には直流電源Eと並列に複数のコンデンサを挿入するなどして、電源の低インピーダンス化を図ります。

この目的に使用するコンデンサをバイパスコンデンサ(略してパスコン)と呼びます。電子回路設計の上では暗黙の了解として当然挿入されるべき部品なのですが、回路設計に携わっていないと気が付かない、一種の暗黙の了解による落とし穴?のようなものです。

SAT電験3種講座 電力 質問回答(電験3種 平成26年 電力 問7 過去問解説 配電線路の電圧降下と負荷電力の計算)

電力 H26-7 掲題の問題ですが、近似式は。v=√3I(Rcosφ+Xsinφ)と公式暗記しているのですが講義の内容の、解答プロセスがよくわかりません。詳細な解答プロセスを、ご教示お願い致します。以上、宜しくお願い致します。

>v=√3I(Rcosφ+Xsinφ)

この式はその通りです。これを用いて答えを求めます。

まず、1km1線あたりの抵抗が0.45Ω、リアクタンスが0.25Ω、配電線路が2kmですから、

  1. R=2×0.45=0.9Ω
  2. X=2×0.25=0.5Ω

となります。また、遅れ力率85%ということはcosθ=0.85ですから、cos^2θ+sin^2θ=1の関係から、sinθ=0.53が求まります。

以上より、

  • v=√3I(0.9×0.85+0.5×0.53)=1.784I

が求まります。

問題の条件から、負荷の端子電圧6.6kVに対して上記の式で計算できる電圧降下がその5%以下ですから、

  • 1.784I<6600×0.05

となり、これを解くと

  • I<185

が求まります。すなわち線電流が185A以下なら良いことになります。

以上、負荷の端子電圧と線電流、力率が求まりましたから、負荷電力は、

  • √3×V×I×cosθ=√3×6600×185×0.85≒1798kW

と求まります。

問題をパッと見るとどのように解いたら良いのか見当がつかない気もしてしまうかもしれませんが、ゆっくり落ち着いて順番に考えれば、それほど難しくないことがお判りいただけたかと思います。

SAT電験3種講座 機械 質問回答(電験3種 平成26年 機械 問15 同期電動機の出力計算)

平成26年の機械過去問、問15(a)ですが、回転数1800rpm、機械出力は400/√3÷√3×200×1=26.7kw、角速度×トルク=仕事(26.7kw)から1800/60×T=26.7kT=890Nと考えたのですが、回答と一致しません。解説の動画では、公式に当てはめて〜としか解説がありません。P=3EVsinθ/xの公式かと考えたのですが、力率1=cosθ=1、sinθ=0?となりこの式の展開も不明でした。どこで考え方を間違えているのでしょうか?ご教授お願いします。

まずトルクですが、これは回転運動において、回転中心軸からの距離×その点での力の積です。

力学的な仕事は、力×距離で定義されます。例えば10Nで5mの距離にわたって力を与え続けた場合の仕事は50Jです。回転運動の場合は、常に回転方向が変わるため、円周上での力と、その円周上での回転距離が仕事になります。そこで、回転運動の1秒間の回転数をxとすると、回転中心からの距離をr、その円周上での力をFとして

  • 2πr・x・F

が1秒間の仕事、つまり仕事率(単位:ワット)ですから、この値を電気的な入力とイコールで結んで計算できることになります。

この電動機の電気的入力は、三相なので3×(400/√3)×200=138564Wとなります。また、回転数は120f/pより1800rpmですから、1秒間では1800÷60=30回転です。

したがって、

  • 2πr・30・F=138564

と求まります。トルクTは、この式中のrとFの積ですから、

  • 2π・30・T=138564

となり、これよりT=約735N・mが求まります。

(b)は、提示されているベクトル図で考えるのが最も分かりやすいかと思いますので、図を添付いたします。

まず、出力条件が変わらないので、IM1cosθ=IM、そして図中のVの値も力率変化前と同一値です。

図より、まずIM1を求めます。IM1cosθ=IMより、IM1は231Aと求まります。

IM1が求まれば、次はjxsIM1の値を計算します。xsは1Ωなので、xsIM1は231Vです。

ベクトル図から、この231Vにsinθを掛けたものが同期リアクタンスに発生する電圧の有効分で、これは115Vです。

同様に、231Vにcosθを掛けたものが同期リアクタンスに発生する電圧の無効分で、これは200Vです。

以上より、(400/√3)+115Vと200Vの二乗和がEになりますから、これを求めると約400Vが導き出せます。

添付図に赤丸で計算順序を書きましたので、併せてご覧いただければと思います。