「電力」カテゴリーアーカイブ

SAT電験3種講座 電力 質問回答(電験3種 平成28年 電力 問1 過去問解説 発電に使用する水量の計算)

電験3種の電力のH28年度の過去問からで、A問題の問一のDVD解説で発電に使用した水量は、60×60×60×8=とありますが、この式はどっから来るのでしょうか?

問題文を見ますと、

  • 「発電使用水量60㎥/s」
  • 「発電運転時間=8h」

とあります。つまり、1秒間に60㎥の水量を8時間流して運転しているわけですから、

60㎥×60秒×60分×8時間で、発電に使用した総水量を求めています。

電力の前段階の理論の科目で、エネルギの定義の所で

エネルギ1J=1Wの電力×1秒間

という話をしておりますし、MKS単位系で時間は基本的に秒単位を使うのが正式ですから、秒単位に直しているという事を考えていただければ60×60を掛けていることが推測できるかと思います。

あと、過去問の解説がはしょりすぎてて分かりにくいです。お金払ってるので、その分返していただけますか?

電験3種の試験範囲は幅広いですから、例えば極論すれば足し算や掛け算のレベルから解説してしまうと、時間がいくらあっても足りないことになってしまいますし、大多数の方がそれを望んでいるとも思えません。資格のヒエラルキとしては、電験1種ー電験2種ー電験3種ー第1種電気工事士ー第2種電気工事士という順序ですので、第1種電気工事士ないし第2種電気工事士程度のレベルを想定して内容を考えております。

また、過去問の解説は、一通り講座の内容を理解したうえで実戦的な問題に取り組んだという事を想定しております。なので、一問一問について初歩から解説することはしておりません。むろん、それで分からない部分につきましては質問を投げて頂くことにより回答するというフォロー体制を取っております。

無論、決して安くはないお金を払っていただいておりますから、相応のフォローはしているつもりです。しかし、どんなモノを作ったとしても、百人が百人、万人が万人満足するものを作ることもまたできないのが人間の世の中というものです。御不満という事でしたら返品して頂いて構いませんので、何卒よろしくお願い申し上げます。

SAT電験3種講座 電力 質問回答(電験3種 平成23年 電力 問11 過去問解説 マーレーループ装置の平衡条件)

電力 H23-11 の解答ですが、(エ)十分低いが、解答になりますが、どうして、十分低いが解になるのかいまいち理解できません。以上、宜しくお願い致します。

まず直感的に答えますと、もし故障点の地絡抵抗が100Ω、1000Ω、10000Ω…と高ければ高いほど異常度合いは小さく、正常稼働状態と変わらなくなっていきます。ケーブルの短絡故障を検出したいのですから、正常状態と大きくかけ離ればかけ離れるほど強く検出されることになり、そのためには地絡抵抗が低い方が大きな故障、つまり強力に検出されることになります。

理論的に考えます。マーレーループ装置に内蔵されている電源のアース側を見てください。

このアースは、被測定ケーブルに対してどこに接続されるかというと、図中「故障点」と書いてある部分のアースから外皮をたどり、×で示される故障点を経由してケーブルの心線に接続されます。ケーブルの心線は、

  1. ×点ー(左)-(マーレーループ装置のa点)ー電源の上側端子
  2. ×点ー(右)-(ケーブルA-接続線ーケーブルB)-(マーレーループ装置のa点)ー電源の上側端子

という2つの経路を通って電源に戻ります。このとき、

  • ×点ー(左)-(マーレーループ装置の下側端子)抵抗をR1
  • 0点-a点の抵抗をR2
  • ×点ー(右)-(ケーブルA-接続線ーケーブルB)-(マーレーループ装置の上側端子)の抵抗をR3
  • 1000点-a点の抵抗をR4

とすると、ブリッジの平衡条件から、

  • R1×R4=R2×R3

で平衡することになり、これから故障点が見つかります。

しかし、もし故障点の地絡抵抗が大きいと、この地絡抵抗がマーレーループ装置の電源と直列に入ってしまい、マーレーループ装置の平衡点がシャープに出なくなってしまいます。地絡抵抗が限りなく0Ωに近い完全短絡状態であれば、ブリッジ回路に流れる電流も大きくなるため、平衡点がシャープに出て故障点を探りやすくなります。

 

SAT電験3種講座 電力 質問回答(電験3種 平成21年 電力 問1 水力発電所のエネルギ計算)

電力のP7の例題ですが、発電機の定格出力がKWになっております。文章からすると通常KVAの記載で負荷が80%ということは力率が0.8ということになり、KWとになると思います。P=WcosΘ W:VA ご回答お願いします。

次にP9の例題ですが、水の密度の記載がもれています。解答から判断し1000kg/m^3と思われます。よろしくお願いします。

この例題ですが、これは電験3種の平成21年問1の出題問題からの引用です。

ご指摘の通り、発電機の定格出力については皮相電力で表されていることが多いですが、この問題については国家試験の出題もkW単位での出題となっておりましたので、難しく考えることなくそのまま2500kW×0.8で2000kWということで宜しいかと思います。

また、水の密度は実際の試験問題ではもちろん記述されておりますが、その前のページに「1㎥の水の質量は1t」と記述しておきましたので、それで宜しいかと思い省略した次第です。

某書籍 読者質問

SATの電験3種講座とは直接関係のない話ですが、諸般の事情により私の元に回送されてきた、某書籍の読者質問に対する返答です。

同期速度の式の分母2pとありますが、pではないでしょうか。同様の式が他のページにも散見されます。

電動機の極は、磁石のN極またはS極の1つをもって一極としています。しかし、磁石はN極やS極が単独で存在しないため、この数え方でいうと極数は必ず偶数になります。そこで、「極数を2p」として、暗黙のうちに極数は必ずSNの2対ずつという意味を持たせています。

同期速度は、良く120f/Pという式で表されますが、このPを2pという値に置換えたものとして考えていただければ、筋は通っているはずです。

(パーセント電圧降下を求める際、抵抗やリアクタンスにおける電圧降下を三相電圧の√3分の1で割っている式を指して)パーセント抵抗降下とパーセントリアクタンス降下の式中のルート3は不要ではないでしょうか。

パーセント抵抗降下やパーセントリアクタンス降下については、相電圧に対して一相あたりの電圧降下を求める場合はご指摘の通り√3は不要です。この式では、電圧降下の割合を求める計算式の分母を定格電圧(三相相電圧)を用いて定義しているため、あえて√3を入れて相電圧を求めてから計算する形になっています。このあたり、暗黙の前提があるため少々混乱することもあるかと思いますが、ご理解いただければと思います。

SAT電験3種講座 電力 質問回答(電験3種 平成27年 電力 問3 発熱量と発電量の計算)

電力27年A問題 問3について質問です。

計算式に、30日間と言う内容がありませんが、何故かわかりません。重油消費量の1100tは、30日間連続運転時なので、式に出てこないのが、何故かわかりません。

あまり、理解出来ていないので、教えてください。

エネルギというのは、位置エネルギや運動エネルギ、熱エネルギ、電気エネルギなど色々な形があり、単位はジュール[J]で、それぞれ相互変換することができます。この問題の場合、「重油の燃焼による熱エネルギ」=「発電した電気エネルギ」という条件で式を立てることで答えを求めることになります。

熱エネルギを求める式は、

  • (燃料の重量)×(単位重量当たりの発熱量)

電気エネルギを求める式は、

  • (電力)×(時間)

ですので、出題の条件と照らし合わせてみます。

すると、熱エネルギは、

  • 1100[t]×1000[kg/t]×44000[kJ/kg]×1000[J/kJ](単位:ジュール[J])

電気エネルギは、

  • 5000[MW・h]×1000000[W/MW]×60×60[s/h](単位:[W・s]=ジュール[J])

(講義で使ったパワーポイントは誤って24が入っていますが、これは誤りです)

となり、実は「30日間」という数字は問題に関係ないことが分かります。

この問題は、エネルギの定義として、発熱量の単位ジュールと、電力量の単位1W×1秒=1ジュールがイコールである、という事さえ知っていれば求まる問題ですので、慌てて計算して誤ることの無いよう(…私も余計な24と入れて資料を作っておいて人のことを言えませんが…)お気を付け頂ければと思います。

SAT電験3種講座 電力 質問回答(電験3種 平成26年 電力 問7 過去問解説 負荷電力の計算方法)

【質問】解法の違いについて

下記のように、①と②でそれぞれ説明されています。一見異なった解法のようですが、これは

①は、電圧降下の値を求めて解法する

電圧降下の式V=√3I(COSΘ+SINΘ)を使用

②は、電圧変動率を求めて解法する

電圧変動率の式ε=PCOSΘ+qSINΘを使用

ということで、解法の違いとの認識でよろしいのでしょうか?

したがって、どちらで解いてもOKでしょうか?

 

①電力テキスト17の解法***********************

例題にて、上記問題が取り上げられています。この時の解法は、以下の通り。

・線路のインピーダンス

0.45×2+j0.25×2=0.9+0.5Ω

・降下電圧

√3I(0.9×0.85+0.5×√1-0.85²)・・①

・P=√3VICOSΘ より

I=(P/6.6)×(1/0.85)×(1/√3)・・②

6.6K×0.05=330

よって①に②を代入して

√3×(P/6.6)×(1/0.85)×(1/√3)×

(0.9×0.85+j0.5×√1-0.85²)≦330

>以上より、P=1800KW

 

②電力の過去問、H26、問7での解法*************

・電圧変動率

ε=PCOSΘ+qSINΘ

=(0.9×0.85+0.5×√1-0.85²)=1.03

(P/0.85)/6600=6600×0.05

よって、P=1800KW

 

御指摘の件ですが、おっしゃる通り、解法の違いであってどちらでも大丈夫です。

理論の問題で、キルヒホッフ・重ね合わせ・テブナンのように複数の解答方法があるのと同じで、複数の解き方がある問題の一例です。

もちろん、複数の解き方いずれも使えるようになっておくことは、より深く理解していることになりますから、どちらも使えるようにして頂ければ幸いです。

SAT電験3種講座 電力 質問回答(電験3種 平成26年 電力 問7 過去問解説 電圧降下の計算)

電力の過去問(H26、問7)での解説についてです。解法は以下の通りになりますが、

電圧変動率ε=pCOSΘ+qSINΘ=(0.9×0.85+0.5×√1-0.85²)=1.03

(p/0.85)/6600=6600×0.05よって、P=1800KW

この解法の下記点についてです。

(p/0.85)/6600←この部分

P/0.85は、皮相電力ですが、それを6600で割ると何が求まるのでしょうか?説明だと負荷の電力とありましたが、答えのP=1800KWから計算すると(1800/0.85)/6600=0.32となります。それからすると、負荷の電力ではなく、負荷端子電圧に対しての割合?になるのでしょうか?

 

電圧降下は、抵抗とリアクタンス、そして線電流によって発生しますが、これらはもちろんベクトルであり角度差を持っているので、別個に計算してベクトル和を求める必要があります。しかし、厳密な計算でなければ簡易式Pcosθ+Qsinθrcosθ+xsinθで近似できます。

ここで線電流を求めるために、皮相電力を電圧で割って線電流を求めています。この線電流に対してPcosθ+Qsinθrcosθ+xsinθを掛けることでベクトル和としての電圧降下を求める、という順序になっているわけです。

以上をまとめると、

  1. P/0.85で皮相電力を求める。
  2. 皮相電力を電圧で割って線電流を求める。
  3. 線電流と線のインピーダンスの積が電圧降下なので、線電流×(pcosθ+qsinθ)を求める。
  4. その電圧降下を6600×5%=330Vと置いて逆算することでPを求める

という順序となります。

(2018/8/14訂正、rcosθ+xsinθとなるべきところをPcosθ+Qsinθなどと誤っておりました…。)

SAT電験3種講座 電力 質問回答(電圧降下について)

電験3種の電力編p36の1行目に電圧降下とありますが、電圧降下=電圧発生という認識でよろしいでしょうか?理論にも何度か出てきたのですがここで明確にしておきたいと思いました。

質問の通り、電圧降下が発生する=電圧が発生するという認識で合っています。

電気理論で、オームの法則とキルヒホッフの法則がありました。オームの法則は、電圧・電流・抵抗の間にV=IRの関係があるというもので、キルヒホッフの法則は、電圧や電流の合計値に矛盾が無いという事を言っているものです。

したがって、電圧降下が発生する→抵抗によってV=IRの電圧が発生する→その電圧の分だけ電圧が落ちるという事になります。

SAT電験3種講座 質問対応改善

SATさんの方で、質問対応の専門人員を確保してくださることになりました。

これまで、長いと一週間ほど質問を貯めてしまっていたので、だいぶ状況は改善されるかと思います。もちろん、そちらで回答できない質問については私に回ってくると思いますが、何卒よろしくお願い申し上げます…。

SAT電験3種講座 電力 質問回答(三相3線式回路の電線の接続方法)

三相三線式の3本の送電線、あるいは配電線の端末はどのような形で接続されていますでしょうか?単相の場合はテキストでもわかりやすくイメージできるのですが、3線の端末処理の形がイメージできません。

私のイメージでは変電所の変圧器の鉄心に巻かれるときは、そこで3本が交わっている。それ以外では、例えば配電線の末端で柱上トランスが接続している場合、3線のうちの2本をトランスに接続して単相を取り出すと思いますが、残りの1本を含め電柱の上でどのような形で3線の端末が結線されているのかが分かりません。

変電所に行かない一番下にある終末の鉄塔の送電線の端末も同じくです。端末で3線とも碍子に繋がれているという情報もありましたが、これでは回路にならないのではないでしょうか?
よろしくお願いします。

単相交流では、2本の線で電気を送り、片方の線が右側に電流を流していれば、もう一方の線は必ず同じだけ左側に電流を流している。これはとても分かりやすいです。

三相交流の場合は、3本の線で、お互いタイミングがずれて(数学的には120°ずつ)電流を流しています。これはちょうど、3本のパイプが真ん中でY字状に結合されていて、その3本のパイプに水が流れている状況と似ています。どれか2本が水を送っていれば、残りの1本は必ずそれを同じ量の水を排出しますし、2本が水を排出している場合、残りの1本のパイプはそれを同じだけの量の水を送り込んでいなければ辻褄が合いません。

実際の変圧器の結線については、私が手書きで図を描くよりも綺麗な図がありますのでアドレスをお知らせします。

3線のうちの2本をトランスに接続して単相を取り出すと思いますが

小容量の変圧器は、基本的にはそのような回路になっていることもありますが、実際は色々な変圧器が作られています。これも外部リンクで申し訳ありませんが、

この辺りを参考にされればよろしいかと思います。このうち、スコットトランスは面白い原理で動作するものです。電験3種の試験でも極めて稀ではありますが出題されたことがないわけではありません。(注:2017年2月27日現在、上記昭和電機製作所の「スコット結線変圧器」の下にある巻線図は、左右逆に誤っています)