「仕事」カテゴリーアーカイブ

SAT電験3種講座 理論 質問回答(電験3種 平成28年 理論 問1 点電荷による電位の計算)

H28年 理論A1

ビデオの解説を見ましたが、何回見てもよくわからないので解説お願いします。両辺をqで割って2乗しての部分が、同じになりません。計算の説明が飛んでいて、自分で再現できないので、詳細おねがいします。そしてその答えが、4番だということですが、どうしてBの電荷のところの形が丸になるのか?よろしくおねがいします。

x,y平面上で、ある点(x1,y1)と(x2,y2)の間の距離は、ピタゴラスの定理から√((x1-x2)^2+(y1-y2)^2)で求められます。

つまり、x座標の差の2乗とy座標の差の2乗を合計し、ルートを取った値になります。

これを念頭に置くと、ある点(x,y)と点Aの間の距離は、

  • √((x-2d)^2+y^2)

点Bとの間の距離は、

  • √((x+d)^2+y^2)

となります。Qクーロンの点電荷から距離r離れた点の電位は、k・(q/r)ですから、ある点における電位は、

  • {2Q/√((x-2d)^2+y^2)} + {-Q/√((x+d)^2+y^2)}

で表されます。電位が0Vとなる条件は、この値がゼロになることなので、

  • {2Q/√((x-2d)^2+y^2)} + {-Q/√((x+d)^2+y^2)}=0

より、

  • {2Q/√((x-2d)^2+y^2)} ={Q/√((x+d)^2+y^2)}

となります。

等式は、両辺に同じ値を掛けても成立しますから、両辺に

  • {√((x-2d)^2+y^2)}・{√((x+d)^2+y^2)}

を掛けると、

  • 2Q√((x+d)^2+y^2) = Q√((x-2d)^2+y^2)

となります。(御質問より、ここまでは大丈夫かと思います)

この両辺をQで割ると、

  • 2√((x+d)^2+y^2) = √((x-2d)^2+y^2)

となり、両辺を2乗すると、

  • 4((x+d)^2+y^2)=(x-2d)^2+y^2

最初の項のカッコを外すと、

  • 4(x+d)^2+4y^2=(x-2d)^2+y^2

となります。

ここで、中心が(a,b)であり半径がrの円の方程式は

  • (x-a)^2+(y-b)^2=r^2

で表されることを念頭に置いて展開しまとめると、解答にあるように

  • (x+2d)^2+y^2=(2d)^2

となり、「中心が(-2d,0)で半径が2dの円の方程式」が導出されるわけです。

 

【2017/7/10追加】

赤字部分の展開を追加で掲載しておきます。

SAT電験3種講座 機械 質問回答(電験3種 平成19年 機械 問1 過去問解説 直流直巻電動機の性質)

機械編9ページの例題「直流直巻電動機」について理解できないので教えて下さい。電磁誘導の法則ということで E=kφN がでてきてNを巻き数と言っています。ところが機械出力P=EI=k’NI^2のあとは、Nのことを回転数と言っています。巻き数と回転数とはイコールなのでしょうか?また機械出力 P=EI と 逆起電力 E=kφN からいきなり N=E/kI となっています。φが消えてしまっています。これはφとIは比例関係にあるためでしょうか。

この部分はご指摘の通り、端折り過ぎたり記号の使い方が適切ではなくて混乱を与えてしまっている箇所と認識しています。

改めて、一から解説いたします。

まず、磁束密度φの中をコイルが回転するときに発生する電圧は、磁束密度φと回転速度とコイルの巻き数に比例します。ここで、巻数も回転速度も記号N(もしくはn)とすることが多いため、ビデオ内でE=kφNのNを巻数と言ってしまいましたが、ここでのNは回転数の誤りです。

従って、E=kφNのkは比例定数(もちろんコイルの巻き数にも比例しますし、コイルが磁束内を貫く断面積にも比例するので、これらを合わせた比例定数ということになります)、φは磁束密度、そしてNは回転数と訂正いたします。

次に、P=EIですが、これは「電力=電圧×電流」に対応しています。つまり、機械的出力は、コイルに発生する逆起電圧とコイルに流れる電流の積と等しいことになります。この式にE=kφNを代入すると、P=kφNIとなりますが、「直流直巻電動機は、界磁巻線に流れる電流と電機子に流れる電流が同一」であることから、界磁磁束の密度φは、実は電機子電流Iに比例します。

従って、φ=aI(aは比例定数)として、P=kφNI=akNI^2となり、ここで定数akを新たにk’として、P=k’NI^2が求まります。

この式をNについて解くと、N=P/(k’I^2)となり、P=EIを代入するとN=E/k’Iが求まり、ここで電機子回路・界磁回路の直列抵抗をr、電源電圧をVとすると、電機子の逆起電圧E=V-rIであることから、N=(V-rI)/k’Iと表すことができます。

この電動機を無負荷で回転させるということは、出力電力P=0であることを意味します。P=EIより、E=0かI=0になればこの条件を満たします。

まず、N=E/k’I=(V-rI)/k’IにおいてE=0とすると、これは電機子巻線の逆起電圧がゼロであることを意味するので、E=kφNより界磁磁束がゼロか回転数Nがゼロである必要があります。ここで回転数がゼロの場合、電機子の逆起電圧はゼロなので、回路には電機子回路・界磁回路の直列抵抗をrとしてV/rの電流が流れます。この電流は界磁巻線にも流れますから、必ず界磁磁束が発生し、回転トルクが生まれて電動機は回転を始めます。したがって、回転数Nも界磁磁束もゼロという条件は構造上成立しません。

次に、I=0の条件を考えます。このとき、N=E/k’IにおいてI=0とすると、Nは無限大に発散することが分かります。つまり、直流直巻電動機は、無負荷で電源電圧を与えるとどんどん回転数が上昇し、やがて回転子が遠心力に耐えられなくなり壊れてしまうわけです。

以上、私の喋り間違いのほか詳しい解説を端折ったためご迷惑をお掛けして申し訳ありませんでした。

SAT電験3種講座 理論 質問回答(電験3種 平成24年 理論 問16 Δ-Y回路に流れる線電流と位相差)

平成24年度理論過去問の問16について、下記解説の中に疑問があります。I1が接続されている負荷Z=5√3+j5Ωの両端の電圧(青矢印)を求める際に、図の、スター結線上にベクトルを表現し計算をしていますが、なぜそれが可能なのでしょうか。電源電圧をデルタ結線からスター結線に変換する際に位相を考える時、なぜ上記のようなスター結線上でのベクトル計算が可能になるのかが分かりません。

結論から言いますと、三相各相の位相差120°と、回路図の接続方法が幾何学的に同一になっているからです。

まず前提として、ベクトルは平行移動が可能であるということを念頭に置きます。

交流発電機は、円周上をグルグル回転する円上の点の高さを取った値であるsin波形の電圧を発生しています。そこで、電圧波形などはある瞬間で時間を止め、その時の波形のベクトルを用いて互いの関係を表現します。

ここで例えば、Eaが配線図の角度のように、基準から時計回り120°の電圧を発生させている瞬間を考えます。

このとき、EcはEaに対して-4π/3、つまり-240°ですから+120°をEaに足して240°の電圧を発生していることになります。

同様にして、EbはEaに対して-120°ですから、真右方向の電圧ベクトルになります。

これらは、丁度この回路図の互いの角度関係とぴったり同じになっているため、回路図上にベクトルを立てて負荷側に平行移動し、Δ電源からY負荷を接続した場合の電圧位相の関係を求めることができたわけです。

このように、三相各相の位相差を、回路図上にそのまま表現できることを利用すると、ベクトルを用いた位相計算が直感的に分かりやすくなるのではないかと思います。

SAT電験3種講座 機械 質問回答(電験3種 平成23年 機械 問17 過去問解説 三相整流回路の出力電圧)

電験3種機械過去問H23年問17に関して質問です。

ここでは三相全波回路に関する問いで、三相交流全波回路、三相半波回路の出力の式の導出を教えて頂いてもよろしいですか?

 

「三相交流全波回路、三相半波回路の出力の式の導出」ということですから、

  • 三相全波整流回路の直流平均電圧=1.35Ecosθ
  • 三相半波整流回路の直流平均電圧=1.17Ecosθ

の公式が、何故1.35や1.17になるかという導出過程のことかと思います。

この式の導出にはフーリエ級数展開の知識が必要になります。

電圧や電流、電波に光、音波など、世の中に存在する色々な波の波形は、綺麗な三角関数波形から複雑でメチャクチャな形の波形まで、ありとあらゆる形の波形が存在しています。しかし、どんなにメチャクチャな波形でも、分解すれば必ず色々な周波数のsin(cos)波形の和で表されるということが数学的に証明されています。これがフーリエ級数展開です。

もちろん、三相交流をダイオードで切り取った波形である全波整流波形や半波整流波形も、フーリエ級数を用いて複数の周波数のsin(cos)波形に分解することができます。このとき、十分大きなリアクトルを挿入することで、全波整流波形や半波整流波形の中から0ヘルツの成分、要するに直流成分の項だけを抜き出したのが整流回路の働きになります。

これを実際に計算して求めた結果、上記の数値が出てくるとお考えいただければ結構かと思います。

SAT電験3種講座 機械 質問回答(電験3種 平成26年 機械 問16b 過去問解説 直流チョッパによる回生制動)

平成26年度機械問16(b)についての質問です。

*Q1をオフにしてQ2オンオフ制御し電機子電流の向きを(a)の場合と反対にし、直流機に発電動作(回生制動)をさせることができるということですが、この回生制動と電流の向き、ダイオードの働き、電機子電圧をもとめる200×1.6/2.0=160vの意味が分かりません。図を使って説明していただけるとありがたいです。よろしくお願いします。

この問題は、「Q1をオフにしてQ2を制御」し、「直流機に発電動作」をさせていることから、回路図からQ1を取り去ってしまい、発電機であるMから平滑リアクトルを介して、スイッチQ2と、電源200Vに向けてダイオードが入っている回路と見なすことができます。なお、この動作の場合、Q2と並列に入っているダイオードは特に仕事をしないので(電流が流れることはないので)取り去ってしまって結構です。

このとき、もしQ2が完全にオフを保っていれば、発電機Mの出力端子電圧が200Vを超えた場合、ダイオードを介して200Vの電池側に電流が流れ出すことが分かります。つまり、どれだけ発電しても200Vより端子電圧が上がることは無いわけです。

次に、仮にQ2が完全にオン(短絡)を保った場合、Mの出力は平滑リアクトルを介して短絡されることになります。コイルは直流に対しては抵抗がゼロになることから、これはMの端子は常に短絡されて0Vを保つであろうことが分かります。

以上の事から、Mの端子電圧は

  • Q2が完全にオフの場合Vは200V
  • Q2が完全にオンの場合Vは0V

となり、ON-OFFを繰り返せばその比率に比例した電圧になるであろうことが推測できると思います。

ここでスイッチング周波数が500Hzより一周期は2ms、そしてオンになっている時間が0.4msということはオフになっている時間が1.6msですから、200V×(1.6/2)=160Vという答えが求まります。

SAT電験3種講座 理論 質問回答(電験3種 平成24年 理論 問15b 過去問解説 コンデンサの極板間の電界)

平成24年度問15(b)について質問です。

先生が解説で仰っていた電界の大きさE=V/dは、電源電圧Eとは別物なのでしょうか。それとも電界の大きさE=電源電圧Eとして考えてもいいのでしょうか。

電界というのは、

距離1mあたり何ボルトの電圧差があるか

という値でして、そのため単位も[V/m]となっています。例えば、100Vのコンセントのプラグ間は約1cmで、この間に電圧差100Vが掛かっているため、コンセントのプラグ間に掛かる電界は10000V/mという事になります。

ここで問題に戻りますと、極板間の電界の大きさは、極板間の電圧差を極板間の物理的な距離で割った値になります。

題意から、「コンデンサの極板の形状および面積は同じで極板間に満たされている誘電体も同じ」ですから、コンデンサの静電容量は、C=S/dより、極板間距離に反比例します。

つまり、2μF:3μF:4μFの極板間距離は、1/2:1/3:1/4=6:4:3です。

この回路において、3μF:(2μF+4μF=)6μFの電圧比は2:1ですから、3μFには200V、4μFには100Vの電圧が掛かります。

以上より、3μFの極板間電界は200/4、4μFの極板間電界は100/3となり、200/4:100/3=600/12:400/12=6:4=3:2ですから、答えは(4)と求まります。

SAT電験3種講座 理論 質問回答(電験3種 平成25年 理論 問1 過去問解説 コンデンサの物理的性質)

電検3種 H25年過去問 理論の問題1について質問です。

この問題では選択肢のa,bが間違いとなっていますが、

電界E= v/d=q/εs、V= qd/εsの公式を当てはめると、aもbも誘電体のεrに依存するのではないのでしょうか。

なぜ間違いなのか動画で解説が無かった為理解できていない為、ご教示の程よろしくお願いいたします。

電界E=q/εsという式ですが、これは「極板の面積がSで、そこにqクーロンの電荷が溜まっているとき、電界はq/εsとなる」ということを意味しています。ですから、コンデンサに既にqクーロンの電荷が蓄えられ、この電荷量が変化しない状況であれば、この式を用いて計算することができます。

しかしこの問題では、極板は電源に接続されています。つまり、必要に応じて極板上に蓄えられる電荷qは変動してしまうわけです。

では、何が変動しない値かというと、これは電源電圧です。極板間距離をd、電源電圧をVとすれば、Vが一定である以上、極板間の電界はV/dと決定され、εrに依存しないことになります。

V= qd/εsの式も同じで、電源電圧Vが固定され、εとsとdが一定の値、電源との間で電流は自由に流れる、ということから、q=εsV/dと変形して移動する電荷量qを求める式として使うことができます。極板間電圧が一定でdも一定である以上、電位分布はεrと関係ありません

SAT電験3種講座 理論 質問回答(電験3種 平成27年 理論 問17b 過去問解説 位相差30度が力率1となる理由)

電験3種 H27理論過去問 問17(b)についての質問です。

問題文でiaの波形はeaの波形に対して30度遅れていたとあります。Y-Δ結線で位相が30度遅れるということはわかるのですが、この問題文の「iaの波形はeaの波形に対して30度遅れていた」の記述でそれに気づけませんでした。

そもそもY-Δ結線で位相が30度遅れるというのは、ΔがYに対して何(電圧や電流)が遅れるのかはっきり理解できていないからかもしれません。Y-Δ結線で位相が30度遅れることと今回の問題文の「iaの波形はeaの波形に対して30度遅れていた」が同じ意味になる理屈をお教えいただきたいです。

一般に「Y-Δ結線で位相が30度遅れる」というのは、変圧器において一次側がY結線、二次側がΔ結線となっている場合、一次側の電圧波形に対して二次側の電圧波形が30度遅れることを意味しています。

Y結線であろうがΔ結線であろうが、単相変圧器は一次側と二次側が同相になりますから、今回の回路のようにΔ結線の電源に対してY結線の負荷が接続される状況は、本質的に変圧器のΔ結線・Y結線の関係と同じことです。

Y-Δ結線で位相が30度遅れることと今回の問題文の「iaの波形はeaの波形に対して30度遅れていた」が同じ意味になる理屈をお教えいただきたいです。

この図は、平成24年の問16の回路図ですが、V結線はΔ結線から一相を抜いたもので、発生する相電圧はΔ結線もV結線も違いはありませんから、これを流用して考えます。

Δ電源側の電圧の一相を基準として取り出すと、b’からa’に向かう赤矢印のようなベクトルの電圧を発生しています。ベクトルは平行移動することができますから、始点をY結線負荷側の中性点に移動させて緑色の位置に持ってきます。

ここで、負荷の中点からa’への電圧(青色のベクトル)と緑色のベクトルの関係を考えると、青色が30度の遅れになっていることが分かります。

つまり、負荷の力率が1であれば相電圧と相電流の位相が同じとなり、そうすればa’点に向かう相電流(平成27年問17でいえばia)はEa(平成27年問17でいえばea)より30度遅れることになります。

以上のようなロジックで、平成27年問17(b)は力率が1になる条件を求めれば良いということになるわけです。

SAT電験3種講座 理論 質問回答(電験3種 平成24年 理論 問2 過去問解説 電位の連続)

平成24年度問2について質問です。

選択肢1.2.4の位置PやQの電位についてよく分かりません。位置PやQとは、ε0の領域とε1の領域の、どちらに含まれている位置なのかを厳密に考える必要はありますか?

コンデンサの性質は、極板に溜まった電荷によって誘電体内の電荷が引き寄せられるor反発することだと思うので、プラスに帯電している部分を電位が高い・マイナスに帯電している部分を電位が低いと呼ぶとしたら位置PやQは厳密にはどちらの領域内の位置なのかを考える必要があるのでは?と思いました。

考え方が間違っているとしたらどこが間違っているのかも教えて頂ければと思います。よろしくお願い致します。

PとQの位置は、どちらの領域に含まれているかで値が不連続に変わることはありませんから、厳密に考える必要はありません。これは何故かというと、電位は不連続になることはなく、連続であるからです。

電位というのは、

「電界に逆らって(あるいは、電界によって引き付けられる力に対抗しながら)宇宙の果てから1クーロンの電荷を1個、その場所まで持ってくるときに必要な力と距離を積算したもの」

です。遠くにあるうちはほとんど力は要りませんが、近付いてくるにしたがって電界からクーロン力を受けるようになります。この力と動かした距離を掛け算し、足し合わせたものが電位です。

このとき、媒質が異なる点を境にして受ける力が変化するようなことがあったとしても、その「力×距離」の結果が不連続に飛ぶことはあり得ません。したがって、誘電体が違う媒質の境界面の外側と内側を通過するときも、電位は連続となります。