「仕事」カテゴリーアーカイブ

SAT電験3種講座 電力 質問回答(電験3種 平成25年 電力 問15b 過去問解説 汽力発電所の排熱計算)

電力 H25-15(b)

題記の問題ですが、解説の方を、詳しくお願い致します。

まず、エネルギ保存の法則より、発生したエネルギ(熱エネルギ、電気エネルギ・・・etc)の総量は保存されます。燃料を燃やして発生した熱のうち、例えば38%が電気エネルギになるのであれば、残り62%のエネルギは空気中や冷却水などに失われていきます。

次に、火力発電所の構成ですが、燃料を燃やして作った熱エネルギを水蒸気のエネルギ(熱エネルギ等)に変換し、それでタービンを回して機械エネルギを作り出し、その機械エネルギで発電機を回して電気エネルギを得ています。また、タービンの出力に出てきた使用済み蒸気が持つ熱エネルギは、基本的には海水などで冷却することで失われていきます。

さて、題意より発電機効率が98%、そしてこの発電所の発生電力量が186[MW・h]であったことから、発電機の軸に送り込まれる機械エネルギは、186/0.98で約190[MW・h]ということになります。

タービンは水蒸気の熱エネルギ等を受けて機械エネルギに変換する装置ですから、この熱消費率が8000[kJ/(kW・h)]より、タービンで消費される(タービンに送り込まれる)熱エネルギは、

  • 8000×190×1000[kJ]

となります。1000を掛けているのは、タービン出力の機械エネルギの単位をMW・hからkW・hに変換するためです。

次に、タービンの軸出力を求めます。(タービンに送り込まれるエネルギ)-(タービンの軸出力)が、捨てられる熱になるからです。これを求めると、

  • 44000×40×1000×0.38×(1/0.98)

となるので、タービンの出力となる余剰排熱は、

  • 8000×190×1000-44000×40×1000×0.38×(1/0.98)=8.38×10^8[kJ]

となります。

一方、水が吸収する熱量は、比熱×温度差×密度×体積で求められますから、

  • 8.38×10^8=4.0×7×1000×(3600×V)

これを解くと、約8.3が求まり、答えは(2)となります。

ポイントは、(燃料の燃焼で発生した熱量)-(発電した電力量)が海水の廃熱になる訳ではないという点です。燃料の燃焼で発生した熱量のうち何割かが水蒸気のエネルギになり、水蒸気は送られる途中で熱エネルギを失い、タービンの機械的出力が100%電力になる訳ではなく機械的・電気的損失も生じる・・・というわけで、この問題においては、純粋にタービンに送り込まれる熱量と、タービンの機械軸から取り出されるエネルギ量の差を求める必要がある点でしょう。

SAT電験3種講座 電力 質問回答(汽力発電所のT-S線図)

電力のテキストの15ページの例題でDからEで温度が下がってEとAは同じ温度になっているのですが、冷却前と後で何故同じ温度なのですか?よろしくお願いします。

図のE→Aの部分ですが、これは高温・高圧の水蒸気がタービンで膨張した後、低温・低圧になったものを復水器で水に戻す部分です。

これは、高温と低温は逆になりますが、身近な例でいえば降り積もる雪が水を張った池に降り注いでいるような状態です。

池に着水する直前までの雪は氷点下の温度ですが、大量の水が張ってある池に着水した瞬間に瞬時に溶けて水と同じ温度になってしまいます。厳密にいえば着水した瞬間からの短い時間は、水の温度も若干下がりますが、雪よりも圧倒的に水の量が多いため、すぐに水は元の温度に戻ります。

このグラフも同じで、E点の直前は水蒸気が液体である復水に接触する直前、そしてE点の直後は水蒸気が水に吸収された直後です。E点からA点に向かうほんの少しの間は若干温度は高くなっているはずですが、ほぼ無視できる値であるため、E~A間は完全に等温と近似して描いてしまっているわけです。

もっとも、池に雪が降り注いでいる場合、雪は少しずつ池の水を冷やしますから、どこかに池の水を加熱する温源がない場合、やがて池の水は凍ってしまいます。熱サイクルも同じですが、こちらは海水などの低温源に対して常時放熱していますから、復水の温度は上昇せず一定温度を保っていられる、ということになります。

SAT電験3種講座 機械 質問回答(電験3種 平成27年 機械 問5 過去問解説 同期発電機の三相短絡曲線グラフ)

機会の平成27年問5のグラフの意味しているところを、もう少し詳細に教えて頂けませんでしょうか?

このグラフは、同期発電機の特性を表す典型的なグラフです。

同期発電機は、直流電流で励磁した回転コイルの周囲に発電コイルを置き、その発電コイル(幾何学的位相差が120°)から三相交流を取り出す、という構造になっています。

従って、同期電動機の特性は、大きく分けると

  • 回転コイルの励磁電流
  • 回転コイルや発電コイルの巻数
  • 発電コイルの巻線の抵抗
  • 発電コイルの巻線のリアクタンス

によって決定されることになります。それぞれの値が発電機の特性に与える影響は、

  • 回転コイルの励磁電流…大きくすると磁束が増え発電電圧が増加する
  • 回転コイルや発電コイルの巻数…多いと発電電圧が増加する
  • 発電コイルの巻線の抵抗・リアクタンス…小さいと負荷接続時の電圧硬化が小さくなる

ということになります。したがって、発電機の特性を知るためには、これらの値を求めることが重要となります。

出題のグラフのA曲線は、回転コイルの励磁電流に対する、無負荷時の発電電圧を示すものです。コイルの発電電圧はファラデーの電磁誘導の法則に従いますから、本来は励磁電流に対して発電電圧は直線になるはずですが、現実問題としては鉄心の磁気飽和特性などにより、ある程度以上は頭打ちになる性質を持っています。この特性は無負荷時ですから、発電コイルの巻線抵抗・リアクタンスの影響は含まれず、純粋に発電の特性を表しています。

出題のグラフのB曲線は、発電コイルを短絡したうえで励磁電流を増加させたときの、励磁電流に対する短絡電流を表すグラフです。

これらより、励磁電流を一定にした場合の発電電圧を、同じ励磁電流時の短絡電流で割ることにより、発電コイルのインピーダンスを求めることができることになります。従って、VnをInで割れば巻線のインピーダンスが求まることになります。

しかし、これで巻線のインピーダンスを求めることはできません。何故なら、発電機の定格電流Inに対して、短絡電流Isはそれを上回っていることになり、これは正しい運転状態ではないからです。また、具体的な巻線のインピーダンスを何Ωと求めることは余り重要ではなく、それよりも定格運転時(例えば200V1000VAの発電機であれば、出力電圧200V、出力電流10A)において、負荷のインピーダンス(200V1000VAであれば、20Ω)に対して、発電機内部の発電コイルの巻線インピーダンスが何割くらいの値になるか、という数値の方が重要です。これにより、負荷を接続した場合の端子電圧降下割合を求めることができるわけです。

この値を百分率インピーダンス(百分率同期インピーダンス)と呼び、無負荷で定格電圧を発生させる励磁電流を、短絡で定格電流を流す励磁電流で割って求めます。従って、正解は(5)ということになります。

SAT電験3種講座 理論 質問回答(電験3種 平成25年 理論 問8 抵抗の組み合わせ回路の計算)

中下の10Ωと50Ωについては両端が短絡されているために切り離して考えればいいと書いてありますが着眼点がわかりません。電験は同じ問題は出ませんがどのような回路図が出たらこれは切り離して考えればいいんだなとか考え方の着眼点を教えてください。

この質問を頂いて、はたと考えてしまいました。

私はこの回路を見て、瞬時に回路右半分は切り離せると分かったのですが、それは何故分かったか?と言われても、さて?何故だろう?としばらく考え込んでしまいました。

結論としては、

http://wp.khz-net.co.jp/?p=334

に書いた通りなのですが、この回路図に持っていく過程を知りたいということですよね。

私が着目したのは、画像の赤線の部分、つまり電池のマイナス端子につながる一本の線です。

電線は常に等電位ですから、静電遮蔽と同じ理屈で、この線の右と左とでは回路は完全に切り離して考えることができます

すると、この線の右側にある抵抗5本について、電圧源はどこにもありませんから、この抵抗軍には一切電流が流れないことが分かります。つまり、完全に無視して考えることができ、左上の5Ω、10Ω、40Ωだけを考えれば良いことになります。

このような接地側電源線の引き回しに関する考え方は、電子回路設計でプリント基板を設計する場合の定番でして、私の直感的感覚もそこから来ているように思います。「この点に注目しこのように考えれば絶対できる!」というような歯切れの良い答えが出来ず申し訳ありませんが、何卒ご容赦頂ければと思います。

SAT電験3種講座 法規 質問回答(電験3種平成25年問13 完全地絡事故発生時の電圧から求めたD種接地抵抗)

過去問380ページ 法規 問13の(b)問題で答えが、33.3Ωになったので、答えの選択肢は、(5)35 の方が近い答えだと思うんですが、なぜ(4)30 が正解になるのでしょうか?

この問題は、平成25年の問13かと思いますが、出題文の条件として「完全地絡事故が発生した場合の対地電圧を25V以下としたい」とあります。計算値では33.3…となりますが、これをもし35Ωにしてしまうと、完全地絡事故発生時の対地電圧が25Vを超えてしまいます。したがって、計算値に最も近く、かつ計算値よりも下の値として30Ωが正解ということになります。

SAT電験3種講座 機械 質問回答(電験3種 平成25年 機械 問13 過去問解説 ブロック線図の伝達関数)

平成25年度 機械 問13の解説で、ブロック線図の、あるところに1を置くは何とか理解できましたが、それからの式の立て方がよくわかりません。もう少し解説して頂けないでしょう。宜しくお願い致します。

ブロック線図の入出力特性は、任意の点を「1」と置いて特性を求めればよいのですが、このブロック線図では入力V1から出力V2に至る経路と、外乱Dから出力V2に至る経路が別ですから、これらを分けて考えたうえで重ね合わせることで求めます。これを分けずに計算しても一見上手く行くように見えるのですが、これは誤った答えが出てしまいます。何故誤ってしまうかというと、ひとつの計算式の中に外乱Dと入力V1を入れた式は、DとV1が互いに影響を与え合うという前提になってしまうからなのです。

  • D=0と置いた場合

V2=1として各部の値を求めます。すると、G2の出力はG2、そしてD=0ですから、G1の入力は 1/G1となります。V1の右の白丸(加減算点)は、

入力がV1、そこからG2を引いた出力が1/G1

となればいいので、このときのV1の値は 1/G1+G2です。

したがって、全体としては、「 1/G1+G2を入力したとき、出力は1」

なので、

V2={G1/(1+G1G2)}V1

が求まります。

  • V1=0と置いた場合

同じ手法でDとV2の間の関係を求めます。V2=1として各部の値を求めると、G2の出力はG2、そしてV1=0ですから、V1の右の白丸(加減算点)は、

「入力がV1=0、そこからG2を引いた出力」

が出てくるので、G1への入力は-G2です。したがって、G1の出力はG1G2で、G1の右の白丸(加減算点)は、

「入力がG1G2、そこにDを足した出力がV2=1」

ですから、このときのDは1-G1G2です。

この式を変形して、

V2={1/(1+G1G2)}D

という関係式が求まります。

あとは、重ね合わせの原理で、この2つの式を足したものが答えとなります。

SAT電験3種講座 理論 質問回答(電験3種 平成23年 理論 問9 RC直列回路の基本的性質)

理論の平成23年の問9なのですが式の立て方と 解き方を教えてくださいよろしくおねがいします

まず、電圧と電流の位相差がπ/3であることから、負荷の位相角がーπ/3であることが求まります。これは回路を見れば一目瞭然で、1000Ωの抵抗を実数分、CのリアクタンスXcを虚数分としてインピーダンス合成し、これらの間のtanθがtan(π/3)になることを意味します。tan(π/3)は√3ですから、コンデンサのリアクタンスは1000√3Ωと求まります。

したがって、1/(2πfC)=1000√3としてf=1000Hzを代入すれば、C=0.09188…μFが導出でき、正解は(2)と求まります。

SAT電験3種講座 理論 質問回答(電験3種 平成24年 理論 問1 コンデンサの基本的性質)

平成24年度の理論の問1の図は、4マイクロファラッドと2マイクロファラッドをたして、6マイクロファラッドになると言うことですか?直列の場合、和分の積で求めると思ったのですが、図は並列のあつかいですか。

この回路では、「電源電圧がゼロVの電源による直列回路」とも、「外部電源が切り離されている並列回路」とも見ることができます。

スイッチを入れた後は、「回路電流が流れ、両コンデンサの極板間電圧が等しくなった時の電圧」を求めるわけですから、これは並列条件(極板間電圧がどちらも等しい)となります。

単にコンデンサの直列や並列の静電容量の公式を暗記するだけで物理的な性質を理解していないと解けない問題なのですが、コンデンサと回路の基本的な物理的性質、つまり

  1. スイッチを入れてから両方のコンデンサに流れる電流、そして電荷量は等しい
  2. コンデンサが並列であれば極板間電圧は同じになる
  3. コンデンサの極板間電圧は、V=Q/Cで求められる

という点を理解していれば解ける問題ということが言えるでしょう。

SAT電験3種講座 機械 質問回答(電験3種 平成23年 機械 問16 過去問解説 直流電動機の界磁電流と負荷特性)

直流電動機の例題二問目について質問です。問題の後半「界磁電流を半分にして~制御し制御ししなければならないか」の部分がわかりません。負荷と釣り合った状態とはどんな状態ですか?イメージがわきません。また、どういう意味かも分かりません。またどこの負荷のことですか?回答よろしくお願いします。

電動機というのは要するにモーターのことです。モーターは、電気のエネルギを回転のエネルギーに変える機械ですから、電動機の問題で「出力」というと、機械的出力のことを意味します。

電動機が電気エネルギを機械エネルギに変換する原理は、回転巻線に電流を流した時に発生する磁力と、固定巻線に電流を流した時に発生する磁力どうしの間の吸引・反発力です。

回転巻線に発生する逆起電圧×回転巻線に流れる電流が出力(単位はワット)となります。

以上のことから、問題の条件を考えます。

誘導起電力が200V、回転巻線の電流が20Aということは電力は4000Wです。機械的出力も4000Wです。

回転速度が600rpmから1320になり、「負荷はトルクが一定で回転速度に対して機械出力が比例して上昇する」ということは、機械的出力は2.2倍になることを意味しています。

トルクというのは簡単に言えば回転に要する力のことです。例えば、人間が手で何かを回転させるとき、重い物体をグルグル回すのには大きな力が要りますが、軽い物体なら軽く回せます。

同じ力の人であれば、物体が重ければ重いほど回転させる速度は遅くなることが分かりますから、力×回転数が正味の出力になるという感覚は掴めるかなと思います。

ここでは、力(トルク)が一定ということなので、出力は純粋に回転数に比例することになります。

さて、「界磁電流が半分」ということは、固定巻線に電流を流した時に発生する磁力が半分ということですから、回転巻線におけるファラデーの電磁誘導則の磁束Φが半分になることを意味します。

ただし、回転数が2.2倍になっているので、これも電磁誘導則の「コイルが磁束を横切る速度」が2.2倍ということになり、結局界磁磁束が0.5倍×回転数が2.2倍で、誘導起電力は元の1.1倍です。

電動機の機械的トルクは、回転巻線に電流を流した時に発生する磁力と、固定巻線に電流を流した時に発生する磁力どうしの間の電磁力ですから、界磁電流が半分で元と同じトルクを作るためには回転巻線の電流は2倍必要です。

したがって電機子電流は40Aとなり、電機子の直列抵抗の電圧降下が40×0.4=16V、これと誘導起電力200×1.1を足して236Vが端子電圧、という流れです。

SAT電験3種講座 電力 質問回答(電験3種 平成23年 電力 問6 出題文の意味)

電験3種電力H23年問6に関しての質問です。(4)、(5)の文章の意味が理解できないので詳細を説明して頂いてもよろしいですか。

(4)ですが、地線とはアースされている電線のことです。つまり、横から見ると、上から電力線・アース線・通信線の順番になっているという意味です。

このとき、電力線とアース線の間がコンデンサ、アース線と通信線との間がコンデンサとなりますが、電力線からの静電誘導はアース線によってアースされてしまい、通信線に対する静電誘導を遮蔽する役割を持ちます。

しかし、文章では「電磁誘導」となっているので誤りです。文中、静電誘導と電磁誘導が逆であれば正しい記述です。

(5)ですが、同軸ケーブルは外皮が接地されて中心線がシールドされている構造になっています。したがって、これは電磁誘導にも静電誘導にも強い構造です。

光ファイバはそもそも電流を通さず光しか通していないので、電磁誘導も静電誘導も受けません。