「仕事」カテゴリーアーカイブ

SAT電験3種講座 機械 質問回答(電験3種 平成28年 機械 問2 過去問解説 鉄機械・銅機械の定義とその性質)

28年度の過去問に取り掛かっていますが問2で鉄機械と銅機械の違いがあやふやな人はしっかり復習するようにとの先生のコメントがありました。テキストやDVDではそのような講義はしていなかったと思うのですが、見落としておりましたらどこで解説していたかご教示お願いします。

私只今出先におりまして、ビデオの中のどの辺りで喋ったかどうなのか定かでなくて申し訳ございません。

鉄機械と同機械の意味ですが、これはこの出題にある通りに覚えて頂ければ結構です。

磁界から電気を発生させるのはファラデーの電磁誘導の法則に従いますが、電磁誘導の法則によると、発生電圧は磁束密度とその速度(時間的変化の大きさ)、そして磁束を電線が貫く面積に比例します。より端的に言うと、発電機の回転数、界磁磁束の大きさ、そしてコイルの巻数に比例するわけです。

発電機の回転数を変えると発電周波数が変わってしまうのでこれを一定とすると、高い電圧を得るためには磁束を増やすか巻数を増やすかのどちらかということになります。磁束を増やすためには鉄心を太くしなければいけませんから、鉄心を太くして磁束を増加させ、比較的少ない巻線で発電電圧を得るのが鉄機械、逆に比較的細い鉄心の少ない磁束で、巻線を増やして発電電圧を得るのが銅機械です。

鉄機械は、巻線が少ないので抵抗分が小さく、出力電流を取り出しても電圧降下が小さいほか、物理的に鉄心の量が多いということは力学的な慣性が大きく、外乱に対して回転数の変化が小さいという特徴を持ちます。これも、出力変動に対する発電機の安定性に寄与します。欠点は、物理的に巨大になり、回転数も余り増やせない、そしてコストが高いという点です。

銅機械はその逆で、比較的軽量ですが電圧降下が大きく、安定性も相対的に低い、ということになります。高速回転で用いるタービン発電機が銅機械に適しています。

SAT電験3種講座 理論 質問回答(電験3種 平成24年 理論 問2 過去問解説 コンデンサに挿入した誘電体による挙動)

(1)~(5)について、それぞれなぜ(誤)、もしくは(正)なのか理由がよくわかりません。くわしい、解説を宜しくお願いいたします。

このコンデンサの最初の状態は、極板間距離がdで静電容量がC0、そこに電源電圧V0が与えられています。

したがって、極板AB間の電位は、単純にBからの距離に比例し、極板Bからの距離をxとすればV0・(x/d)です。

これを踏まえて考えると、それぞれ、以下の通りとなります。

(1)正しい

誘電体を挿入すると、極板A側から4C0、(4ε1/ε0)C0、2C0の3つのコンデンサが直列接続されたものと等価です。

コンデンサを直列にした場合の電圧配分は、コンデンサの静電容量の逆比になるので、これを求めるとP点の電位は挿入前の3V0/4よりも低下することが求められますが、この計算は面倒なので、直感的に解説します。

誘電率が大きな誘電体を満たしたコンデンサは、誘電体挿入前よりも静電容量が増加します。コンデンサに流れた電荷をQ、極板間電圧をVとすると、V=Q/Cですから、Qが一定の場合、Cが増加すればするほど極板間電圧は小さくなります。

これはちょうど、バネの強さに置き換えることができます。一定の力を与えて伸ばしたとき、強いバネはほとんど伸びませんが、弱いバネはすぐに伸びます。静電容量が大きなコンデンサは、電荷を蓄えても電圧上昇が小さいですから、電荷を力、電圧上昇がバネの伸びとすると、誘電率が大きな物体を挿入したコンデンサは、強いバネになると置き換えて考えることができます

この例えで考えると、図のように、最初は一様なバネでAB間を接続していたところを、PQ間を切って、代わりに強いバネを入れたのと同じように考えられます

このとき、P点は最初よりも右側にずれますから、電位は低下することが分かります。

(2)正しい

これも上の図から、Q点は当初よりも左にずれるので、電位は上昇することが分かります。

(3)正しい

コンデンサの一部にでも誘電体が大きな物体を挿入するのですから、静電容量は当然大きくなります。

(4)誤り

これもバネで例えます。PQ間を導体にしたということは、どんなに電荷が流れてもPQ間の電圧はゼロVのままということになります。これは、当初の状態からPQ間のバネを切り取り、直接PとQをつないでしまったのと同じですから、当然P点は当初より右に、Q点は当初より左に動きます。従って、P点の電位は当初より下降、Q点は上昇します。

(5)正しい

PQを導体にしたときの静電容量は4C0と2C0の直列ですから、当然当初より大きくなります。

最初に書きましたように、確かにコンデンサの静電容量の式を駆使すれば全て求まるのですが、それより一歩進んで添付図のようなイメージを持っていただくことが出来れば、より好ましいのではないかと思う次第です。

SAT電験3種講座 機械 質問回答(電験3種 平成27年 機械 問8 過去問解説 三相変圧器の巻数比計算)

平成27年の機械の問8にて

Y側の線間電圧が3,299Vと求まり、その後、1次側Δ結線で2次側がY結線であるので、3,299Vを√3で割っていました。(=Y結線の相電圧に変換した?)

私が問題を解いた時は、Y結線の線間電圧=Δの相電圧=Δの線間電圧であると考え、そのまま3299Vで計算しました。今回、3,299Vを√3で割っていた件について、詳しく説明いただけませんか?初歩的な質問で申し訳ありませんが、よろしくお願いいたします。

まず、

>Y結線の線間電圧=Δの相電圧=Δの線間電圧であると考え

ここがおかしいようです。

変圧器の一次側はΔ結線で線間電圧440V、三相電力100kW、力率1.0と条件が揃っていますから、Δ結線の線間電圧は440Vと即座に分かります。もちろん、3代の単相変圧器とも、一次側巻線の電圧は440Vです。これは何も難しい事はありません。

次に二次側です。二次側は、Y結線で線電流が17.5A、三相電力100kWという条件から、三相電力は√3×線間電圧×線電流という条件より、√3×線間電圧×17.5=100000を解いて線間電圧は3299Vと求まります。

ここで変圧器の二次側はY結線ですから、一相当たりの巻線の電圧の√3倍が二次側の線間電圧です。従って3299Vを√3で割った値が変圧器一相当たりの巻線に発生する電圧ということになります。これを求めると巻線電圧は1905Vとなり、これを一次側の440Vで割ることで、二次側の巻線は一次側の4.3倍であることが求まります。

SAT電験3種講座 電力 質問回答(電験3種 平成25年 電力 問15b 過去問解説 汽力発電所の排熱計算)

電力 H25-15(b)

題記の問題ですが、解説の方を、詳しくお願い致します。

まず、エネルギ保存の法則より、発生したエネルギ(熱エネルギ、電気エネルギ・・・etc)の総量は保存されます。燃料を燃やして発生した熱のうち、例えば38%が電気エネルギになるのであれば、残り62%のエネルギは空気中や冷却水などに失われていきます。

次に、火力発電所の構成ですが、燃料を燃やして作った熱エネルギを水蒸気のエネルギ(熱エネルギ等)に変換し、それでタービンを回して機械エネルギを作り出し、その機械エネルギで発電機を回して電気エネルギを得ています。また、タービンの出力に出てきた使用済み蒸気が持つ熱エネルギは、基本的には海水などで冷却することで失われていきます。

さて、題意より発電機効率が98%、そしてこの発電所の発生電力量が186[MW・h]であったことから、発電機の軸に送り込まれる機械エネルギは、186/0.98で約190[MW・h]ということになります。

タービンは水蒸気の熱エネルギ等を受けて機械エネルギに変換する装置ですから、この熱消費率が8000[kJ/(kW・h)]より、タービンで消費される(タービンに送り込まれる)熱エネルギは、

  • 8000×190×1000[kJ]

となります。1000を掛けているのは、タービン出力の機械エネルギの単位をMW・hからkW・hに変換するためです。

次に、タービンの軸出力を求めます。(タービンに送り込まれるエネルギ)-(タービンの軸出力)が、捨てられる熱になるからです。これを求めると、

  • 44000×40×1000×0.38×(1/0.98)

となるので、タービンの出力となる余剰排熱は、

  • 8000×190×1000-44000×40×1000×0.38×(1/0.98)=8.38×10^8[kJ]

となります。

一方、水が吸収する熱量は、比熱×温度差×密度×体積で求められますから、

  • 8.38×10^8=4.0×7×1000×(3600×V)

これを解くと、約8.3が求まり、答えは(2)となります。

ポイントは、(燃料の燃焼で発生した熱量)-(発電した電力量)が海水の廃熱になる訳ではないという点です。燃料の燃焼で発生した熱量のうち何割かが水蒸気のエネルギになり、水蒸気は送られる途中で熱エネルギを失い、タービンの機械的出力が100%電力になる訳ではなく機械的・電気的損失も生じる・・・というわけで、この問題においては、純粋にタービンに送り込まれる熱量と、タービンの機械軸から取り出されるエネルギ量の差を求める必要がある点でしょう。

SAT電験3種講座 電力 質問回答(汽力発電所のT-S線図)

電力のテキストの15ページの例題でDからEで温度が下がってEとAは同じ温度になっているのですが、冷却前と後で何故同じ温度なのですか?よろしくお願いします。

図のE→Aの部分ですが、これは高温・高圧の水蒸気がタービンで膨張した後、低温・低圧になったものを復水器で水に戻す部分です。

これは、高温と低温は逆になりますが、身近な例でいえば降り積もる雪が水を張った池に降り注いでいるような状態です。

池に着水する直前までの雪は氷点下の温度ですが、大量の水が張ってある池に着水した瞬間に瞬時に溶けて水と同じ温度になってしまいます。厳密にいえば着水した瞬間からの短い時間は、水の温度も若干下がりますが、雪よりも圧倒的に水の量が多いため、すぐに水は元の温度に戻ります。

このグラフも同じで、E点の直前は水蒸気が液体である復水に接触する直前、そしてE点の直後は水蒸気が水に吸収された直後です。E点からA点に向かうほんの少しの間は若干温度は高くなっているはずですが、ほぼ無視できる値であるため、E~A間は完全に等温と近似して描いてしまっているわけです。

もっとも、池に雪が降り注いでいる場合、雪は少しずつ池の水を冷やしますから、どこかに池の水を加熱する温源がない場合、やがて池の水は凍ってしまいます。熱サイクルも同じですが、こちらは海水などの低温源に対して常時放熱していますから、復水の温度は上昇せず一定温度を保っていられる、ということになります。

SAT電験3種講座 機械 質問回答(電験3種 平成27年 機械 問5 過去問解説 同期発電機の三相短絡曲線グラフ)

機会の平成27年問5のグラフの意味しているところを、もう少し詳細に教えて頂けませんでしょうか?

このグラフは、同期発電機の特性を表す典型的なグラフです。

同期発電機は、直流電流で励磁した回転コイルの周囲に発電コイルを置き、その発電コイル(幾何学的位相差が120°)から三相交流を取り出す、という構造になっています。

従って、同期電動機の特性は、大きく分けると

  • 回転コイルの励磁電流
  • 回転コイルや発電コイルの巻数
  • 発電コイルの巻線の抵抗
  • 発電コイルの巻線のリアクタンス

によって決定されることになります。それぞれの値が発電機の特性に与える影響は、

  • 回転コイルの励磁電流…大きくすると磁束が増え発電電圧が増加する
  • 回転コイルや発電コイルの巻数…多いと発電電圧が増加する
  • 発電コイルの巻線の抵抗・リアクタンス…小さいと負荷接続時の電圧硬化が小さくなる

ということになります。したがって、発電機の特性を知るためには、これらの値を求めることが重要となります。

出題のグラフのA曲線は、回転コイルの励磁電流に対する、無負荷時の発電電圧を示すものです。コイルの発電電圧はファラデーの電磁誘導の法則に従いますから、本来は励磁電流に対して発電電圧は直線になるはずですが、現実問題としては鉄心の磁気飽和特性などにより、ある程度以上は頭打ちになる性質を持っています。この特性は無負荷時ですから、発電コイルの巻線抵抗・リアクタンスの影響は含まれず、純粋に発電の特性を表しています。

出題のグラフのB曲線は、発電コイルを短絡したうえで励磁電流を増加させたときの、励磁電流に対する短絡電流を表すグラフです。

これらより、励磁電流を一定にした場合の発電電圧を、同じ励磁電流時の短絡電流で割ることにより、発電コイルのインピーダンスを求めることができることになります。従って、VnをInで割れば巻線のインピーダンスが求まることになります。

しかし、これで巻線のインピーダンスを求めることはできません。何故なら、発電機の定格電流Inに対して、短絡電流Isはそれを上回っていることになり、これは正しい運転状態ではないからです。また、具体的な巻線のインピーダンスを何Ωと求めることは余り重要ではなく、それよりも定格運転時(例えば200V1000VAの発電機であれば、出力電圧200V、出力電流10A)において、負荷のインピーダンス(200V1000VAであれば、20Ω)に対して、発電機内部の発電コイルの巻線インピーダンスが何割くらいの値になるか、という数値の方が重要です。これにより、負荷を接続した場合の端子電圧降下割合を求めることができるわけです。

この値を百分率インピーダンス(百分率同期インピーダンス)と呼び、無負荷で定格電圧を発生させる励磁電流を、短絡で定格電流を流す励磁電流で割って求めます。従って、正解は(5)ということになります。

SAT電験3種講座 理論 質問回答(電験3種 平成25年 理論 問8 抵抗の組み合わせ回路の計算)

中下の10Ωと50Ωについては両端が短絡されているために切り離して考えればいいと書いてありますが着眼点がわかりません。電験は同じ問題は出ませんがどのような回路図が出たらこれは切り離して考えればいいんだなとか考え方の着眼点を教えてください。

この質問を頂いて、はたと考えてしまいました。

私はこの回路を見て、瞬時に回路右半分は切り離せると分かったのですが、それは何故分かったか?と言われても、さて?何故だろう?としばらく考え込んでしまいました。

結論としては、

http://wp.khz-net.co.jp/?p=334

に書いた通りなのですが、この回路図に持っていく過程を知りたいということですよね。

私が着目したのは、画像の赤線の部分、つまり電池のマイナス端子につながる一本の線です。

電線は常に等電位ですから、静電遮蔽と同じ理屈で、この線の右と左とでは回路は完全に切り離して考えることができます

すると、この線の右側にある抵抗5本について、電圧源はどこにもありませんから、この抵抗軍には一切電流が流れないことが分かります。つまり、完全に無視して考えることができ、左上の5Ω、10Ω、40Ωだけを考えれば良いことになります。

このような接地側電源線の引き回しに関する考え方は、電子回路設計でプリント基板を設計する場合の定番でして、私の直感的感覚もそこから来ているように思います。「この点に注目しこのように考えれば絶対できる!」というような歯切れの良い答えが出来ず申し訳ありませんが、何卒ご容赦頂ければと思います。

SAT電験3種講座 法規 質問回答(電験3種平成25年問13 完全地絡事故発生時の電圧から求めたD種接地抵抗)

過去問380ページ 法規 問13の(b)問題で答えが、33.3Ωになったので、答えの選択肢は、(5)35 の方が近い答えだと思うんですが、なぜ(4)30 が正解になるのでしょうか?

この問題は、平成25年の問13かと思いますが、出題文の条件として「完全地絡事故が発生した場合の対地電圧を25V以下としたい」とあります。計算値では33.3…となりますが、これをもし35Ωにしてしまうと、完全地絡事故発生時の対地電圧が25Vを超えてしまいます。したがって、計算値に最も近く、かつ計算値よりも下の値として30Ωが正解ということになります。

SAT電験3種講座 機械 質問回答(電験3種 平成25年 機械 問13 過去問解説 ブロック線図の伝達関数)

平成25年度 機械 問13の解説で、ブロック線図の、あるところに1を置くは何とか理解できましたが、それからの式の立て方がよくわかりません。もう少し解説して頂けないでしょう。宜しくお願い致します。

ブロック線図の入出力特性は、任意の点を「1」と置いて特性を求めればよいのですが、このブロック線図では入力V1から出力V2に至る経路と、外乱Dから出力V2に至る経路が別ですから、これらを分けて考えたうえで重ね合わせることで求めます。これを分けずに計算しても一見上手く行くように見えるのですが、これは誤った答えが出てしまいます。何故誤ってしまうかというと、ひとつの計算式の中に外乱Dと入力V1を入れた式は、DとV1が互いに影響を与え合うという前提になってしまうからなのです。

  • D=0と置いた場合

V2=1として各部の値を求めます。すると、G2の出力はG2、そしてD=0ですから、G1の入力は 1/G1となります。V1の右の白丸(加減算点)は、

入力がV1、そこからG2を引いた出力が1/G1

となればいいので、このときのV1の値は 1/G1+G2です。

したがって、全体としては、「 1/G1+G2を入力したとき、出力は1」

なので、

V2={G1/(1+G1G2)}V1

が求まります。

  • V1=0と置いた場合

同じ手法でDとV2の間の関係を求めます。V2=1として各部の値を求めると、G2の出力はG2、そしてV1=0ですから、V1の右の白丸(加減算点)は、

「入力がV1=0、そこからG2を引いた出力」

が出てくるので、G1への入力は-G2です。したがって、G1の出力はG1G2で、G1の右の白丸(加減算点)は、

「入力がG1G2、そこにDを足した出力がV2=1」

ですから、このときのDは1-G1G2です。

この式を変形して、

V2={1/(1+G1G2)}D

という関係式が求まります。

あとは、重ね合わせの原理で、この2つの式を足したものが答えとなります。

SAT電験3種講座 理論 質問回答(電験3種 平成23年 理論 問9 RC直列回路の基本的性質)

理論の平成23年の問9なのですが式の立て方と 解き方を教えてくださいよろしくおねがいします

まず、電圧と電流の位相差がπ/3であることから、負荷の位相角がーπ/3であることが求まります。これは回路を見れば一目瞭然で、1000Ωの抵抗を実数分、CのリアクタンスXcを虚数分としてインピーダンス合成し、これらの間のtanθがtan(π/3)になることを意味します。tan(π/3)は√3ですから、コンデンサのリアクタンスは1000√3Ωと求まります。

したがって、1/(2πfC)=1000√3としてf=1000Hzを代入すれば、C=0.09188…μFが導出でき、正解は(2)と求まります。