8月2日から大阪に来て、SATの電験3種講座を収録しています。
本来なら毎年改訂するのが望ましいのでしょうけど、なかなかそうも行かず。
テキストは、理論の細かい修正と、電力・機械・法規の大幅改定を行いました。
進行具合は、3~6日で理論編の収録を終え、電力に少し入った所です。早くもテキストの誤植を色々と見つけて(*´Д`*)…
明日の大阪は台風で物凄い荒天になりそうですが、ま、頑張ります。
8月2日から大阪に来て、SATの電験3種講座を収録しています。
本来なら毎年改訂するのが望ましいのでしょうけど、なかなかそうも行かず。
テキストは、理論の細かい修正と、電力・機械・法規の大幅改定を行いました。
進行具合は、3~6日で理論編の収録を終え、電力に少し入った所です。早くもテキストの誤植を色々と見つけて(*´Д`*)…
明日の大阪は台風で物凄い荒天になりそうですが、ま、頑張ります。
理論 問7で答えが、20A×1.2倍=24A になるのになぜ、(4)24.0ではなく (3)21.2が正解になるのでしょうか?
この問題は、「4Ωの抵抗とCファラドのコンデンサを直列にした回路」である点がポイントです。もし抵抗がなく、純粋にコンデンサのみであれば、単純に20A×1.2倍になりますが、抵抗は電源周波数が変化しても値が変わらないため、きちんとRC直列回路のインピーダンスを求めなければいけません。
50Hz100Vの電源に対して20Aの電流が流れたということは、RC直列回路のインピーダンスは5Ωです。
抵抗が4Ωであることが分かっているので、このときのコンデンサのリアクタンスをXとすると、
ということになり、両辺を2乗して
ですから、X^2=9よりX=3Ωです。
さて、コンデンサのリアクタンスは1/(jωC)ですから周波数に反比例します。したがって、50Hzで3Ωのリアクタンスを持つコンデンサは、60Hzではその1/1.2、つまり2.5Ωのリアクタンスとなります。
以上より、60Hz時のRC直列回路全体のインピーダンスは、
ですから、このとき回路に流れる電流は、
と求まります。
2001年に上梓したUnix本から、消防設備士、電気工事士、電験3種、エネルギー管理士と来て、ようやく最も本業(?)に近い無線関係の本を出すことができました。
http://www.kobunsha.org/book/00411.html
私はもともと電子回路から入って無線通信を通して無線工学を専門としてきたので(大学で研究していたのはレーダーですし)、最も良い本が書けそうな分野は電子回路や無線工学だったのですが、世の中、電気関連書籍の需要といえば電気工事士や電験3種などの強電分野が圧倒的に強く、なかなか機会に恵まれずにおりました。
それが今回、弘文社様とのご縁を頂き、執筆にまるまる一年(いや、それ以上だ…)掛かってめでたく日の目を見ました。
内容ですが、同類他書にはあり得ないレベルで分かりやすく書いたつもりです。レビューによる評価も気になるっちゃ気になるのですが、それ抜きにしても「うわー、これってメチャクチャ難しいと思っていたけど、本質はこんなに簡単なことだったんだ!」と目からウロコが何十枚も落ちる読者様が出てくることを切に願っております。笑。
最初に書いた原稿のデータから、多重通信の概要についての説明と、デシベル計算についての話を置いておきます。
一陸特とくれば、次は一陸技向けの参考書を…!となりそうな気がするし、個人的にも一陸技向けのすんげー分かりやすい本を書けば多くの人に喜んでもらえそうな気がするんだけど、さてそれをするとなったら執筆期間どれだけ必要なことか…。
(なお一陸特の本、執筆に一年以上掛かっているけれども実質的に作業をしていた期間は正味一か月程度だった模様←)
以下販売店リンク。
http://www.yodobashi.com/product/100000009002829795/
https://www.amazon.co.jp/dp/toc/4770327188/ref=dp_toc?_encoding=UTF8&n=465392
http://books.rakuten.co.jp/rb/15059469/
https://lohaco.jp/product/L02083579/
電験3種機械過去問H24年問15テキストP426
(b)の1で直流電源の高周波インピーダンスが低いことが要求されるとありますが理由を教えてもらっていいですか。
この回路はインバータですから、直流電源Eからの電流を半導体スイッチで切り替え、負荷に対して正負交互に電流を流しています。
従って、直流電源Eは、負荷に対して十分な電流を流すことができる電圧源(内部インピーダンスが極小)である必要があります。
しかし、その上であえて「高周波インピーダンスが低い」という条件が追加されている理由は、半導体スイッチの切り替え時に電源には過渡的な電流変動が発生し、その電流変動は高い(半導体スイッチの切り替えに伴う50Hzや60Hzではなく、数~数十kHzにも及ぶ)周波数の成分を含んでいるからです。そのような高い周波数成分に対しても十分に低インピーダンスの電圧源にしないと、負荷に供給される電流波形が歪んでしまい、思ったような電力を供給することが出来なくなります。
これを解消するため、一般的には直流電源Eと並列に複数のコンデンサを挿入するなどして、電源の低インピーダンス化を図ります。
この目的に使用するコンデンサをバイパスコンデンサ(略してパスコン)と呼びます。電子回路設計の上では暗黙の了解として当然挿入されるべき部品なのですが、回路設計に携わっていないと気が付かない、一種の暗黙の了解による落とし穴?のようなものです。
電力 H26-7 掲題の問題ですが、近似式は。v=√3I(Rcosφ+Xsinφ)と公式暗記しているのですが講義の内容の、解答プロセスがよくわかりません。詳細な解答プロセスを、ご教示お願い致します。以上、宜しくお願い致します。
>v=√3I(Rcosφ+Xsinφ)
この式はその通りです。これを用いて答えを求めます。
まず、1km1線あたりの抵抗が0.45Ω、リアクタンスが0.25Ω、配電線路が2kmですから、
となります。また、遅れ力率85%ということはcosθ=0.85ですから、cos^2θ+sin^2θ=1の関係から、sinθ=0.53が求まります。
以上より、
が求まります。
問題の条件から、負荷の端子電圧6.6kVに対して上記の式で計算できる電圧降下がその5%以下ですから、
となり、これを解くと
が求まります。すなわち線電流が185A以下なら良いことになります。
以上、負荷の端子電圧と線電流、力率が求まりましたから、負荷電力は、
と求まります。
問題をパッと見るとどのように解いたら良いのか見当がつかない気もしてしまうかもしれませんが、ゆっくり落ち着いて順番に考えれば、それほど難しくないことがお判りいただけたかと思います。
平成26年の機械過去問、問15(a)ですが、回転数1800rpm、機械出力は400/√3÷√3×200×1=26.7kw、角速度×トルク=仕事(26.7kw)から1800/60×T=26.7kT=890Nと考えたのですが、回答と一致しません。解説の動画では、公式に当てはめて〜としか解説がありません。P=3EVsinθ/xの公式かと考えたのですが、力率1=cosθ=1、sinθ=0?となりこの式の展開も不明でした。どこで考え方を間違えているのでしょうか?ご教授お願いします。
まずトルクですが、これは回転運動において、回転中心軸からの距離×その点での力の積です。
力学的な仕事は、力×距離で定義されます。例えば10Nで5mの距離にわたって力を与え続けた場合の仕事は50Jです。回転運動の場合は、常に回転方向が変わるため、円周上での力と、その円周上での回転距離が仕事になります。そこで、回転運動の1秒間の回転数をxとすると、回転中心からの距離をr、その円周上での力をFとして
が1秒間の仕事、つまり仕事率(単位:ワット)ですから、この値を電気的な入力とイコールで結んで計算できることになります。
この電動機の電気的入力は、三相なので3×(400/√3)×200=138564Wとなります。また、回転数は120f/pより1800rpmですから、1秒間では1800÷60=30回転です。
したがって、
と求まります。トルクTは、この式中のrとFの積ですから、
となり、これよりT=約735N・mが求まります。
(b)は、提示されているベクトル図で考えるのが最も分かりやすいかと思いますので、図を添付いたします。
まず、出力条件が変わらないので、IM1cosθ=IM、そして図中のVの値も力率変化前と同一値です。
図より、まずIM1を求めます。IM1cosθ=IMより、IM1は231Aと求まります。
IM1が求まれば、次はjxsIM1の値を計算します。xsは1Ωなので、xsIM1は231Vです。
ベクトル図から、この231Vにsinθを掛けたものが同期リアクタンスに発生する電圧の有効分で、これは115Vです。
同様に、231Vにcosθを掛けたものが同期リアクタンスに発生する電圧の無効分で、これは200Vです。
以上より、(400/√3)+115Vと200Vの二乗和がEになりますから、これを求めると約400Vが導き出せます。
添付図に赤丸で計算順序を書きましたので、併せてご覧いただければと思います。
理論テキストP62 並列共振回路
RLC並列共振回路ではインピーダンスが最大、電流は最小、力率1となりますがなぜそうなるのか分かりません。
流れる電流はRのみになるのなら直列共振と同じように電流は最大になるのではないでしょうか?文章解答だけでなく回路図を使用したり、考察なども含めて質問に解答してください。
それではまず、コイルとコンデンサの基本的な性質をおさらいします。
コイルは、電線を輪のように巻いたもので、周波数が低いほどリアクタンスが小さく、周波数が高いほどリアクタンスが大きくなります。
リアクタンスとは、素子に掛かる電圧を流れる電流で割った値で、単位はΩです。
コイルのリアクタンスを式で表すとjωLとなり、角周波数ω=2πfですから、電源の周波数をf(単位はヘルツ)として、リアクタンスはj2πfLとも表現できます。
jは虚数単位ですが、ここでは「コイルに流れる電流は、コイルに掛かる電圧の波形に対して90°遅れている」ことと等価です。したがって、電圧と電流のタイミングを考えずに各々の実効値だけを見て考えれば、コイルに掛かる電圧をV、流れる電流をIとして、V=2πfLIと表すことができます。
コンデンサは、極板を2枚対向させたもので、周波数が低いほどリアクタンスが大きく、周波数が高いほどリアクタンスが小さくなります。コンデンサに流れる電流は、コンデンサに掛かる電圧の波形に対して90°進んでいます。
コンデンサのリアクタンスを式で表すと1/(jωC)となり、こちらもコイルと同様に考えると、コンデンサに掛かる電圧をV、流れる電流をIとして、V=I/(2πfC)と表すことができます。
さて、このような性質を持つコイルとコンデンサを並列に接続すると、コイル・コンデンサに掛かる電圧は同じですから、コイルの電流はそれに対して90°遅れ、コンデンサの電流はそれに対して90°進みとなり、差し引きするとコイルとコンデンサの電流波形は互いに180°の位相差を持つことになります。つまり、コイルが電流を吐き出している間はコンデンサが電流を吸い込み、コイルが電流を吸い込んでいる間はコンデンサが電流を吐き出していることになります。
並列共振は、コイルとコンデンサがやり取りする電流値が同一になっている状態ですから、電流のやり取りがこの2素子間で完結してしまい、外部からは一切電流が流れ込まない状態です。電圧が掛かっているのに電流が流れ込まないということは、リアクタンスは無限大になるわけです。
では、RLC並列回路で電源周波数を変えたときの挙動を考えます。上記の通り、共振状態ではLC並列部分のリアクタンスは無限大ですから切り離して考えることができ、回路に残されるのはRだけですから等価的に抵抗値Rだけとなります。
この状態から周波数を下げてみます。どこまで下げるかと言えば、極端な場合としてゼロHz、つまり直流の場合を考えます。
すると、コンデンサのリアクタンスは1/(2π×0×C)で分母がゼロとなり、無限大つまり電流は全く流れず切り離されてしまうことが分かります。
一方コイルは、2π×0×LでゼロΩです。結局、ゼロΩとRが並列になっているのと同じですから、回路のインピーダンスはゼロとなり、電流はたくさん流れます。
周波数を無限大まで上げた場合は、コイルのリアクタンスが無限大になるものの今度はコンデンサのリアクタンスがゼロとなり、結局ゼロΩとRの並列ですから、回路全体のインピーダンスはゼロΩです。
上記のような極端な例ではなくとも、共振周波数からずれた周波数においては、コンデンサのリアクタンス>コイルのリアクタンスもしくはコンデンサのリアクタンス<コイルのリアクタンスという状態になり、LC並列のリアクタンスの差し引き分は共振状態の無限大のリアクタンスよりも必ず小さくなり、その小さくなったある値のリアクタンスと抵抗Rの合成インピーダンスは、当然共振状態よりも小さくなり、回路に流れる電流は増加することが分かります。
よくEラーニングで知識問題はインターネットでみることができるとおっしゃてますが詳しく載っているインターネットが分かればおしえていただきたいのですが。過去問などを見ても知識問題は載ってますがインターネットのほうが最近の傾向で詳しいのがのってますか?知識問題も理論編のテキストだけで充分ですか?他に手をださなくてもいいですか?
電験三種の勉強にインターネットを活用すると言っても、「このページだけを見ればすべて解決!」というものは有りません。
インターネットは膨大なデータの集合体ですから、その中から上手にデータを検索する技術がインターネットの利用価値を大きく左右するわけです。
と言っても具体的な例を挙げないとイメージが掴みにくいでしょうから、具体例を示してみます。
まず、電験3種の過去問を収集します。
電験3種試験の実施団体である電気技術者試験センターのHPを開きます。
http://www.shiken.or.jp/index.html
その中の「試験問題・解答」を開くと、過去8年分の過去問PDFが手に入ります。
http://www.shiken.or.jp/answer/index_list.php?exam_type=30
ここから、例えば一例として、平成23年度の理論の問題を開いてみます。
http://www.shiken.or.jp/answer/pdf/109/file_nm01/TR_2011.pdf
理論の問1は次のような問題です。
「静電界に関する記述として、誤っているものを一つ選べ」
(1)電気力線は、導体表面に垂直に出入りする。
(以下略)
ここで、「電気力線」が何なのか良く分からなかったとします。そこで、インターネット検索で電気力線について調べます。
google検索で「電気力線とは」と入力すると、Wikipediaなどのページが出てきます。
https://ja.wikipedia.org/wiki/%E9%9B%BB%E6%B0%97%E5%8A%9B%E7%B7%9A
これらの説明を見ても良く分からない場合は、「電気力線とは」で検索したページを次々と開き、分かりやすそうな解説が載っているページを見つつ、過去問を解いていく、という感じです。
この方法だと、場合によっては芋づる式にどんどん検索していく事になりますが、分からないことを調べて勉強するというのは本質的にそういう活動だと思いますから、それで良いのではないかと思います。
テキストの内容についてですが、これは必要最低限のことしか取り上げておりません。もし、どんな問題が出たとしても必ず解説が載っているようなものを作るとしたら、それは何百何千ぺーじもある、それこそ辞書のようなものになってしまいます。
確かにそれを全部覚えれば試験に受かるかもしれませんが、そのようなものが求められているとも思えませんし、そのようなものを何十万円も出して欲しいという人もいないはずです。
確かに知識を詰め込むことも大切ではありますが、ある程度を超えたら勉強の方法、すなわちインターネットを効率よく活用して必要な情報にアクセスするコツを身に着けた方が良いかと思いますので、そのように話をした次第です。
「インターネットのデータなんて信頼性が低くて怪しい」という先入観をお持ちの人も年配の方には多いようですが、信頼性が高いデータから低いデータまで、あらゆる情報を寄せ集めたのがインターネットですので、上手に活用すればこれほど便利なものは有りません。是非、上手に活用していただければと思います。
28年度の過去問に取り掛かっていますが問2で鉄機械と銅機械の違いがあやふやな人はしっかり復習するようにとの先生のコメントがありました。テキストやDVDではそのような講義はしていなかったと思うのですが、見落としておりましたらどこで解説していたかご教示お願いします。
私只今出先におりまして、ビデオの中のどの辺りで喋ったかどうなのか定かでなくて申し訳ございません。
鉄機械と同機械の意味ですが、これはこの出題にある通りに覚えて頂ければ結構です。
磁界から電気を発生させるのはファラデーの電磁誘導の法則に従いますが、電磁誘導の法則によると、発生電圧は磁束密度とその速度(時間的変化の大きさ)、そして磁束を電線が貫く面積に比例します。より端的に言うと、発電機の回転数、界磁磁束の大きさ、そしてコイルの巻数に比例するわけです。
発電機の回転数を変えると発電周波数が変わってしまうのでこれを一定とすると、高い電圧を得るためには磁束を増やすか巻数を増やすかのどちらかということになります。磁束を増やすためには鉄心を太くしなければいけませんから、鉄心を太くして磁束を増加させ、比較的少ない巻線で発電電圧を得るのが鉄機械、逆に比較的細い鉄心の少ない磁束で、巻線を増やして発電電圧を得るのが銅機械です。
鉄機械は、巻線が少ないので抵抗分が小さく、出力電流を取り出しても電圧降下が小さいほか、物理的に鉄心の量が多いということは力学的な慣性が大きく、外乱に対して回転数の変化が小さいという特徴を持ちます。これも、出力変動に対する発電機の安定性に寄与します。欠点は、物理的に巨大になり、回転数も余り増やせない、そしてコストが高いという点です。
銅機械はその逆で、比較的軽量ですが電圧降下が大きく、安定性も相対的に低い、ということになります。高速回転で用いるタービン発電機が銅機械に適しています。
(1)~(5)について、それぞれなぜ(誤)、もしくは(正)なのか理由がよくわかりません。くわしい、解説を宜しくお願いいたします。
このコンデンサの最初の状態は、極板間距離がdで静電容量がC0、そこに電源電圧V0が与えられています。
したがって、極板AB間の電位は、単純にBからの距離に比例し、極板Bからの距離をxとすればV0・(x/d)です。
これを踏まえて考えると、それぞれ、以下の通りとなります。
(1)正しい
誘電体を挿入すると、極板A側から4C0、(4ε1/ε0)C0、2C0の3つのコンデンサが直列接続されたものと等価です。
コンデンサを直列にした場合の電圧配分は、コンデンサの静電容量の逆比になるので、これを求めるとP点の電位は挿入前の3V0/4よりも低下することが求められますが、この計算は面倒なので、直感的に解説します。
誘電率が大きな誘電体を満たしたコンデンサは、誘電体挿入前よりも静電容量が増加します。コンデンサに流れた電荷をQ、極板間電圧をVとすると、V=Q/Cですから、Qが一定の場合、Cが増加すればするほど極板間電圧は小さくなります。
これはちょうど、バネの強さに置き換えることができます。一定の力を与えて伸ばしたとき、強いバネはほとんど伸びませんが、弱いバネはすぐに伸びます。静電容量が大きなコンデンサは、電荷を蓄えても電圧上昇が小さいですから、電荷を力、電圧上昇がバネの伸びとすると、誘電率が大きな物体を挿入したコンデンサは、強いバネになると置き換えて考えることができます。
この例えで考えると、図のように、最初は一様なバネでAB間を接続していたところを、PQ間を切って、代わりに強いバネを入れたのと同じように考えられます。
このとき、P点は最初よりも右側にずれますから、電位は低下することが分かります。
(2)正しい
これも上の図から、Q点は当初よりも左にずれるので、電位は上昇することが分かります。
(3)正しい
コンデンサの一部にでも誘電体が大きな物体を挿入するのですから、静電容量は当然大きくなります。
(4)誤り
これもバネで例えます。PQ間を導体にしたということは、どんなに電荷が流れてもPQ間の電圧はゼロVのままということになります。これは、当初の状態からPQ間のバネを切り取り、直接PとQをつないでしまったのと同じですから、当然P点は当初より右に、Q点は当初より左に動きます。従って、P点の電位は当初より下降、Q点は上昇します。
(5)正しい
PQを導体にしたときの静電容量は4C0と2C0の直列ですから、当然当初より大きくなります。
最初に書きましたように、確かにコンデンサの静電容量の式を駆使すれば全て求まるのですが、それより一歩進んで添付図のようなイメージを持っていただくことが出来れば、より好ましいのではないかと思う次第です。