電験3種の理論の12過渡現象に関する質問です。コイルは直流に対して電流を流しやすく、コンデンサは直流に対して電流を流しにくいと思うのですが、過渡現象の箇所ではコイルは時間変化を嫌うので最初は電流を流さず、コンデンサは時間0の時に電流を流すと矛盾してるような気がします。どこの考え方が間違ってるのでしょうか。
まず、コイルの性質を厳密に言いますと、
- 流れる電流の時間変化が大きければ大きいほど、両端に大きな電圧を発生させる
という性質を持っています。つまり、短ければ短い時間の間に電流が変化するほど、そして電流の変化量が大きければ大きいほどコイルの両端に発生する電圧は大きくなります。
例えば、0.1秒の間に2A変化したとすると、1秒では20A変化する計算になりますが、0.001秒の間に2A変化したとすると、1秒では2000A変化することになります。また、0.1秒間に2A変化すれば1秒間に20Aですが、0.1秒間に5A変化すれば、当然1秒間では50Aの変化になります。
これを数式で表せば、V=L(di/dt)となります。
直流回路において、スイッチを入れた瞬間、それまで電流がゼロだったところに電流を流そうという力が働きます。したがって極めて微小の電流は流れ込むのですが、電流がゼロからいきなりある値になるということは、「電流の時間変化」は物凄く大きな値になります。このときコイルの両端には大きな電圧(与えられた電源電圧と同じ電圧)が発生し、電流が流れ込むのを阻止します。これが、「コイルは時間変化を嫌う」性質です。
その後、徐々に電流が流れるようになると、1Aなら1A、5Aなら5Aで時間的に変化しない電流が流れ続けるようになります。コイルは「流れる電流の時間変化に比例した電圧」を発生しますから、時間変化がゼロであれば両端に発生する電圧もゼロ、つまり単なる電線と同じになります。これが、直流に対しては電流を流しやすいという理由です。
コンデンサは、コイルと真逆の性質を持ちます。つまり、
- 与えられる電圧の時間変化が大きければ大きいほど、内部に大きな電流を流す
という性質です。数式で表せば、V=(1/C)∫idtです。
直流回路でスイッチを入れた瞬間、それまでゼロだった電圧がいきなり上昇するわけですから、与えられた電圧の時間変化はものすごく大きい値になります。したがってコンデンサは大きな電流を遠し、この瞬間だけは、コンデンサはゼロΩ、つまり導線と同じになります。
しかし、直流回路ですから、だんだんと電圧変化はなくなり、やがて5Vなり10Vなりの一定の電圧になります。こうなると「与えられる電圧の時間変化がゼロ」ですから、電流は通さなくなる=電線が切断されているのと同じ状態、となるわけです。これが「コンデンサは直流を通さない」ということの意味です。