10Fの両端が15V、30Vの両端が5Vとなるのは理解できるのですが、「b側を+として5Vとなる」ところで、なぜプラスになるのか理解できておりません。同様にP25のa側をプラスとして2.5Vという符号の部分も理解できておりません。恐らく、電源±の極性とコンデンサの繋がる電極によるもの?と思っているのですが、補足いただけますでしょうか。
上側の20Vの電源だけを残した回路で、10F・30Fともに溜まっている電荷がゼロ(コンデンサの両端の電圧がゼロ)の状態から電池を接続することを考えます。
電流は当然、電池の+端子から-端子に向かって流れますから、10Fのコンデンサは左→右に、30Fのコンデンサは右→左に電流が流れます。コンデンサの極板間に発生する電圧は、電流が流れ込む側が+、電流が流れだす側が-となるため、10Fのコンデンサは左側が+、30Fのコンデンサは右側が+となるわけです。
したがって、a-b間について考えると、b側に+の電圧が発生するわけです。
同様に、10Vの電源だけを残した回路では、電流は電池の+端子から-端子に向かって流れるため、30Fは左側が+、10Fは右側が+になります。
恐らく、電源±の極性とコンデンサの繋がる電極によるもの?
その通りです。電子の流れに沿って正確に言いますと、
- 電池は-端子から+端子に向かって電子を流す
- コンデンサの、電池の-端子側につながる極には、電池から電子が流れ込んで溜まっていく。
- コンデンサの、電池の+端子側につながる極からは、電池の+端子に向かって電子が抜け出ていく。
- したがって、コンデンサの-端子側につながる極は電子過剰、+端子側につながる極は電子不足になる。
- 電子はマイナスの電荷をもっているため、電子過剰な極板は-、電子不測の極板は+に帯電する
ということになります。
電験3種講座の理論のテキストP24、25において「すなわち、b側を+として5V、a側を+として2.5Vとなるわけです」とありますがどう考えたらそのような結論に至るのでしょうか。
この問題の解説は、重ね合わせの原理を用いて、
- 20Vの電源を残し、10Vの電源を無いものとして(短絡して)求めた、20Fのコンデンサの両端の電圧
- 10Vの電源を残し、20Vの電源を無いものとして(短絡して)求めた、20Fのコンデンサの両端の電圧
を足し合わせることで答えを求めています。
まず1つ目です。上側の20Vの電源だけを残した回路で、10F・(20Fと10Fを並列にした)30Fともに溜まっている電荷がゼロ(コンデンサの両端の電圧がゼロ)の状態から電池を接続することを考えます。電池からの電流は、+端子から-端子に向かって流れますから、10Fのコンデンサは左→右に、30Fのコンデンサは右→左に電流が流れます。
コンデンサの極板間に発生する電圧は、電流が流れ込む側が+、電流が流れだす側が-となるため、10Fのコンデンサは左側が+、30Fのコンデンサは右側が+となるわけです。流れた電荷量をQとすると、コンデンサの極板に発生する電圧はQ/Cですから、コンデンサが直列になっている場合、コンデンサに生じる電圧は静電容量に反比例します。
したがって、10Fの両端に15V、30Fの両端に5Vの電圧が発生し、30Fの両端に生じる5Vは右側が+の電圧です。
2つ目は、下側の10Vの電源を残して30Fと10Fが直列になった回路と見なせます。やはりコンデンサに生じる電圧は静電容量に反比例するため、30Fに2.5V、10Fに7.5Vが生じ、30Fの両端に生じる2.5Vは左側が+の電圧です。
以上より、
- コンデンサの右側を+として5V
- コンデンサの左側を+として2.5V
を差し引きして、右側が+2.5Vという答えが求まります。出題文に忠実に言うと、「+2.5Vのa点から+5Vのb点を見ると、b点は相対的に+2.5Vに見える」ということです。
「この合計が20Vであるためには10Fの両端が15V、30Fの両端が5Vとなることがわかります」これはどのような方式を用いてこのようになるのでしょうか?例えば、
- 抵抗の分電圧は比例配分
- 抵抗の分路電流は反比例配分
のような公式はあるのでしょうか?
コンデンサの性質として、Qクーロンの電流が流れた場合、発生する電圧はQ/Cボルトとなりますから、コンデンサが直列の場合、それぞれに発生する電圧は静電容量の反比例配分になります。
オームの法則でおなじみの電圧・電流・抵抗とは別に、「流れた電荷量Qクーロン」が出てくると、一体これは何なのかと難しく思いがちですが、電流×時間=電荷量であることを覚えておけば大丈夫です。