SAT電験3種講座 機械 質問回答(電験3種 平成25年 機械 問13 過去問解説 ブロック線図の伝達関数)

平成25年度 機械 問13の解説で、ブロック線図の、あるところに1を置くは何とか理解できましたが、それからの式の立て方がよくわかりません。もう少し解説して頂けないでしょう。宜しくお願い致します。

ブロック線図の入出力特性は、任意の点を「1」と置いて特性を求めればよいのですが、このブロック線図では入力V1から出力V2に至る経路と、外乱Dから出力V2に至る経路が別ですから、これらを分けて考えたうえで重ね合わせることで求めます。これを分けずに計算しても一見上手く行くように見えるのですが、これは誤った答えが出てしまいます。何故誤ってしまうかというと、ひとつの計算式の中に外乱Dと入力V1を入れた式は、DとV1が互いに影響を与え合うという前提になってしまうからなのです。

  • D=0と置いた場合

V2=1として各部の値を求めます。すると、G2の出力はG2、そしてD=0ですから、G1の入力は 1/G1となります。V1の右の白丸(加減算点)は、

入力がV1、そこからG2を引いた出力が1/G1

となればいいので、このときのV1の値は 1/G1+G2です。

したがって、全体としては、「 1/G1+G2を入力したとき、出力は1」

なので、

V2={G1/(1+G1G2)}V1

が求まります。

  • V1=0と置いた場合

同じ手法でDとV2の間の関係を求めます。V2=1として各部の値を求めると、G2の出力はG2、そしてV1=0ですから、V1の右の白丸(加減算点)は、

「入力がV1=0、そこからG2を引いた出力」

が出てくるので、G1への入力は-G2です。したがって、G1の出力はG1G2で、G1の右の白丸(加減算点)は、

「入力がG1G2、そこにDを足した出力がV2=1」

ですから、このときのDは1-G1G2です。

この式を変形して、

V2={1/(1+G1G2)}D

という関係式が求まります。

あとは、重ね合わせの原理で、この2つの式を足したものが答えとなります。

「SAT電験3種講座 機械 質問回答(電験3種 平成25年 機械 問13 過去問解説 ブロック線図の伝達関数)」への2件のフィードバック

    1. 遅くなり申し訳ありませんでした。
      この手の問題は、本当にきちんとした理論は非常に面倒で難しい(時間tの関数をラプラス変換して複素周波数sの領域に移して計算する、など…)モノなのですが、電験3種で出題される場合にはこのやり方で必ずと言っていいほど解けるのではないかと思います。どうぞ、よろしくお願いいたします。

コメントを残す