SAT電験3種講座 機械 質問回答(電験3種 平成28年 機械 問4 過去問解説 誘導電動機の二次入力、滑りと機械出力)

解説の中で、回転速度、同期速度から、滑りを求めています。そこから、下記計算によって、二次入力を求めています。

  • 二次入力×(1-S)=機械出力
  • P×(1-0.045)=20

以上から、二次入力は、20.9W
この部分↓の考え方が分からないです。

  • 二次入力×(1-S)=機械出力

参考書をみると

  • 二次入力:二次銅損:機械出力=1:S:(1-S)

となる、とあります。(覚えるとのこと)

これからすると、確かにそのような式になるのですが、なぜそのようになるのでしょうか?

そのように覚えればいいのですが、納得のいく理解ができていません。テキストを見直しましたが、その理由がいまいちわかりませんでした。解説の方ををお願いいたします。

 

滑りが0のとき、どうして二次回路に誘起される電圧がゼロになるのですか?滑りが1のとき、二次回路に誘起される電圧が最大値になるのはどうしてですか?s=0.1のとき、二次回路に発生する電圧は静止状態のときの0.1倍になるのはどうしてですか?一次側一相に換算した全抵抗分が90Ωになるのはどうしてですか?

それでは、順番に考えていきます。

誘導電動機というのは、三相交流によって作られる回転磁界の中に、両端を低抵抗で短絡された(巻線型誘導電動機の場合は、その抵抗を外部に引き出して特性を調整できます)回転コイルが挿入されているものです。電源が投入されると、回転コイルを横切る磁界が加えられますから、ファラデーの電磁誘導の法則にしたがい、回転コイルである二次側回路にも電圧が誘起されます。

これはちょうど変圧器と全く同じ構造ですが、二次側のコイルが機械的に回転するところが変圧器と異なる部分です。変圧器であれば、一次側に50Hzの電流を流せば二次側も50Hzとなりますが、誘導電動機の場合、もし仮に二次側コイルが、電源周波数によって作られる磁界の回転速度(同期速度)の半分の速さで回転していたとすると、相対的な周波数は25Hzとなり、二次側回路に発生する電圧の周波数は25Hzです。これはちょうど、100km/hで走る車を止まって見れば100km/hですが、60km/hで走る車から見ると相対的に40km/hに見えるのと同じ原理です。

ここで、滑りsを定義します。滑りは、

  • 磁界の同期速度に対して、回転速度の差が同期速度の何割であるか

の値です。s=1なら二次側の回転速度はゼロで、s=0なら、回転速度=同期速度です。例えば、s=0.1であれば、回転速度は同期速度の90%となります。

このとき、二次側に誘起される交流の周波数は、同期速度と回転速度の差になりますから、s=0なら50Hz、s=0.1なら5Hzです。つまり、二次側コイルの回転速度によって、二次側コイルに流れる電流の周波数は50Hz~0Hzまで変化することになります。
以上の事を前提として、誘導電動機の二次側の等価回路を考えます。

二次側回路は、変圧器の二次側巻線に直列抵抗と直列リアクタンスが入ったものですから、下図のように表せます。

s=1、つまり停止時に誘起される電圧をE2、その時のコイルのリアクタンスをxとします。

回転が上がってくるとs値は1~0の間の値になります。ファラデーの電磁誘導則から、コイルに発生する電圧は単位時間あたりに横切る磁束に比例するため、二次側に誘起される周波数だけでなく電圧も低下していきます。

したがって、二次側回路の電圧源をsE2、そしてコイルのリアクタンスも周波数に比例しますからsx、そして抵抗は周波数や電圧・電流に関係なくrとなるため、上図のような回路と見なすことができます。この回路は、

  • 電圧がsE2
  • 負荷がr+sx

なので、二次回路に流れる電流は、図中にも書いたように

  • I=sE2/√(r^2+s^2x^2)

です。電圧・抵抗・リアクタンスを全てsで割っても回路電流は同じはずですから、図で書いたように

  • I=E2/√((r/s)^2+x^2)

と書くこともできます。

次に、この回路に機械的出力を生み出す負荷抵抗に相当する抵抗Rを入れます。先ほどの回路でr/sとした二次回路の抵抗をrに戻し、その代わりR=(r/s)-rと置くことで、図の回路の全体的な電圧・電流・抵抗・リアクタンスを同じにすることができます。

何故r/sをrに戻したかというと、二次回路に流れる電流Iは仮想的な値ではなく実電流であり、その実電流の2乗に、仮想的なr/sではなく実抵抗のrを掛けたもの(P=r×I^2)が実銅損になるからです。

Rは、もちろん実際に回路に挿入される実抵抗ではなく、機械出力となる仮想抵抗です。この仮想抵抗はどこに存在するかというと、一次巻線と二次巻線との相互作用により、二次巻線に誘起される力率1の電圧として現れます。

電気回路・交流回路の基本に立ち返って考えてみると、

  • 電流Iが流れたとき、電圧Vが発生すれば、それは抵抗R=V/I
  • 交流電流Iが流れたとき、それと全く同位相の電圧Vが発生すれば、それは実電力を消費する力率1の抵抗R=V/I

だったはずです。したがって、一次巻線との相互作用により、二次巻線に流れる電流Iと同相で電流を妨げる向きの電圧Vが発生すれば、それは仮想的に抵抗V/Iと同じなのです。この仮想抵抗で消費される電力は、もちろん熱となるのではなく、電動機の機械的出力となります。

この抵抗Rを挿入した回路において、実電流Iが流れたときの電力損失を求めると、全電力はI^2(R+r)、銅損はI^2r、そして機械出力はI^2Rとなり、これらの比は1:s:(1-s)となります。

「SAT電験3種講座 機械 質問回答(電験3種 平成28年 機械 問4 過去問解説 誘導電動機の二次入力、滑りと機械出力)」への2件のフィードバック

  1. お世話になります。回答ありがとうございました。質問内容について、そうなる理由が理解できました。また、誘導電動機や滑りの定義などについても、改めて理解することができました。また、このサイトの他の質問内容も参考にさせていただきたいと思います。

    1. 有難うございます。
      せっかくこのような仕事をする機会を頂いていますので、他の人にはできない独自性を売りにしていきたいと思っています。
      そのために出来ることとして、どんな細かい質問でも返答して集積していくべく、このページを作っております。
      今後ともよろしくお願いいたします。

コメントを残す