電験3種問題解説・平成25年・機械・問4

誘導電動機の二次入力(=回転コイルに入力される電力)のうち、滑りの割合は二次回路の抵抗負荷として消費され、残り(1-滑り)は機械出力になります。

したがって、滑り0,01の定格運転時は、二次入力の99%が機械出力となっていることを意味します。ここで二次回路の抵抗を大きくして損失が30倍に増えたということは、滑りの値も30倍の0.3に増えたことを意味します。したがって、1-0.3=0.7で虹字入力の70%が機械出力ということになります。

したがって、0.7÷0.99≒0.7、つまり約70%の(4)が答えです。

電験3種問題解説・平成27年・機械・問4

百分率同期インピーダンスは、

「定格運転時に接続されている負荷のインピーダンスに対して、発電機内部の直列インピーダンスの値が、負荷インピーダンスに対して何%であるか」

を意味しています。例えば、仮に全てのリアクタンス分をゼロとして、定格電圧100V、定格出力1kWの発電機があったとすると、その負荷抵抗は10Ωです。もしこの発電機の内部直列抵抗が5Ωであれば百分率同期インピーダンスの抵抗分は50%となり、発電機は150Vの電圧を発生させていることになります。

さて、この問題ですが、力率1.0で運転中ということは負荷は純抵抗です。また、電機子巻線抵抗が無視できて、百分率同期インピーダンスが85%ということは、発電機内部の直列リアクタンスが負荷抵抗の85%の値であることを意味しています。

ここで仮に、出力の定格電圧が100V、定格出力が1kWとします。すると負荷抵抗は10Ωの純抵抗です。負荷電流は10Aです。また、発電機内部の直列リアクタンスは8.5Ωの順リアクタンスであることが求まります。したがって、発電機から見ると

8.5Ωのリアクタンスと10Ωの直列抵抗の負荷に10Aを供給している

という状態になります。このときの発電電圧は、85Vと100Vの二乗平均ですから、約131と求まります。したがって、無負荷にした時の端子電圧は131Vとなり、答えは(4)と求まります。